TJ-II:Radiation asymmetries and potential variations: Difference between revisions

Jump to navigation Jump to search
Line 18: Line 18:
with <math>\theta</math> and <math>\phi</math> the poloidal and toroidal angular coordinates.  
with <math>\theta</math> and <math>\phi</math> the poloidal and toroidal angular coordinates.  
When this is taken into account the equilibrium density of the different species ''a'' present in the plasma  
When this is taken into account the equilibrium density of the different species ''a'' present in the plasma  
varies according to their adiabatic response and can be written as: <math>n_{a0}=\left<n\right>\exp\left(-Z_{a}e\Phi_1/T_{a}\right)</math>, with
varies accordingly since <math>n_{a0}=n_a0(r)\exp\left(-Z_{a}e\Phi_1/T_{a}\right)</math>.
<math>\left<...\right></math> the flux-surface-average. In TJ-II plasmas experiments and simulations  
This can introduce a strong density variation of impurities due to their high charge state. In TJ-II plasmas experiments and simulations  
<ref>M. A. Pedrosa ''et al.'', ''Electrostatic potential variations along flux surfaces in stellarators'' Nucl. Fusion '''55''' 052001 (2015) </ref>
<ref>M. A. Pedrosa ''et al.'', ''Electrostatic potential variations along flux surfaces in stellarators'' Nucl. Fusion '''55''' 052001 (2015) </ref>
<ref>J. M. Garcı́a-Regaña ''et al.'' ''Electrostatic potential variation on the flux surface and its impact on impurity transport'' Nuclear Fusion '''57''' 056004 (2017)</ref>
<ref>J. M. Garcı́a-Regaña ''et al.'' ''Electrostatic potential variation on the flux surface and its impact on impurity transport'' Nuclear Fusion '''57''' 056004 (2017)</ref>
124

edits

Navigation menu