Toroidal coordinates: Difference between revisions

Jump to navigation Jump to search
m
Updated doi references and mathematical expressions
m (Updated doi references and mathematical expressions)
Line 10: Line 10:
== Cylindrical coordinates ==
== Cylindrical coordinates ==


(''R'', ''φ'', ''Z''), where  
<math>(R, \phi, Z)</math>, where  
<ref>[[:Wikipedia:Cylindrical coordinate system]]</ref>
<ref>[[:Wikipedia:Cylindrical coordinate system]]</ref>
* ''R<sup>2</sup> = X<sup>2</sup> + Y<sup>2</sup>'', and  
* <math>R^2 = X^2 + Y^2</math>, and  
* tan ''&phi;'' = ''Y/X''.  
* <math>\tan \phi = Y/X</math>.  


''&phi;'' is called the ''toroidal angle'' (and not the ''cylindrical'' angle, at least not in the context of magnetic confinement).
<math>\phi</math> is called the ''toroidal angle'' (and not the ''cylindrical'' angle, at least not in the context of magnetic confinement).


Cylindrical symmetry (symmetry under rotation over &phi;) is referred to as ''[[axisymmetry]]''.
Cylindrical symmetry (symmetry under rotation over <math>\phi</math>) is referred to as ''[[axisymmetry]]''.


== Simple toroidal coordinates ==
== Simple toroidal coordinates ==


(''r'', ''&phi;'', ''&theta;''), where  
<math>(r, \phi, \theta)</math>, where  
* ''R'' = ''R<sub>0</sub>'' + ''r'' cos ''&theta;'', and
* <math>R = R_0 + r \cos \theta</math>, and
* ''Z'' = ''r'' sin ''&theta;''
* <math>Z = r \sin \theta</math>
''R<sub>0</sub>'' corresponds to the torus axis and is called the ''major radius'', while ''0 &le; r &le; a'' is called the ''minor radius'', and ''&theta;'' the ''poloidal angle''.  
<math>R_0</math> corresponds to the torus axis and is called the ''major radius'', while <math>0 \le r \le a</math> is called the ''minor radius'', and ''&theta;'' the ''poloidal angle''.  
The ratio ''R<sub>0</sub>/a'' is called the ''aspect ratio'' of the torus.
The ratio <math>R_0/a</math> is called the ''aspect ratio'' of the torus.


In order to adapt this simple system better to the [[Flux surface|magnetic surfaces]] of an axisymmetric [[MHD equilibrium]], it may be enhanced by
In order to adapt this simple system better to the [[Flux surface|magnetic surfaces]] of an axisymmetric [[MHD equilibrium]], it may be enhanced by
<ref>[http://link.aip.org/link/?PHPAEN/5/973/1 R.L. Miller et al, ''Noncircular, finite aspect ratio, local equilibrium model'', Phys. Plasmas '''5''' (1998) 973]</ref>
<ref>R.L. Miller et al, ''Noncircular, finite aspect ratio, local equilibrium model'', [[doi:10.1063/1.872666|Phys. Plasmas '''5''' (1998) 973]]</ref>
* letting ''R<sub>0</sub>'' depend on ''r'' (to account for the [[Shafranov shift]] of flux surfaces) <ref>R.D. Hazeltine, J.D. Meiss, ''Plasma confinement'', Courier Dover Publications (2003) ISBN 0486432424</ref>
* letting <math>R_0/a</math> depend on <math>r</math> (to account for the [[Shafranov shift]] of flux surfaces) <ref>R.D. Hazeltine, J.D. Meiss, ''Plasma confinement'', Courier Dover Publications (2003) ISBN 0486432424</ref>
* adding [[ellipticity]] (''&kappa;''), [[triangularity]] (''&delta;''), and squareness (''&zeta;'') to account for non-circular flux surface cross sections. A popular simple expression for shaped flux surfaces is: <ref> R.L. Miller, M.S. Chu, J.M. Greene, Y.R. Lin-Liu and R.E. Waltz, ''Noncircular, finite aspect ratio, local equilibrium model'', [[doi:10.1063/1.872666|Phys. Plasmas '''5''' (1998) 973]]</ref>
* adding [[ellipticity]] (<math>\kappa</math>), [[triangularity]] (<math>\delta</math>), and squareness (<math>\zeta</math>) to account for non-circular flux surface cross sections. A popular simple expression for shaped flux surfaces is: <ref> R.L. Miller, M.S. Chu, J.M. Greene, Y.R. Lin-Liu and R.E. Waltz, ''Noncircular, finite aspect ratio, local equilibrium model'', [[doi:10.1063/1.872666|Phys. Plasmas '''5''' (1998) 973]]</ref>


:<math>R(r,\theta) = R_0(r) + r \cos(\theta + \arcsin \delta \sin \theta)\\
:<math>R(r,\theta) = R_0(r) + r \cos(\theta + \arcsin \delta \sin \theta)\\
Line 37: Line 37:
== Toroidal coordinates ==
== Toroidal coordinates ==


(''&zeta;'', ''&eta;'', ''&phi;''), where
<math>(\zeta, \eta, \phi)</math>, where
<ref>Morse and Feshbach, ''Methods of theoretical physics'', McGraw-Hill, New York, 1953 ISBN 007043316X</ref>
<ref>Morse and Feshbach, ''Methods of theoretical physics'', McGraw-Hill, New York, 1953 ISBN 007043316X</ref>
<ref>[[:Wikipedia:Toroidal coordinates]]</ref>
<ref>[[:Wikipedia:Toroidal coordinates]]</ref>
Line 45: Line 45:
:<math>Z = R_p \frac{\sin \eta}{\cosh \zeta - \cos \eta}</math>
:<math>Z = R_p \frac{\sin \eta}{\cosh \zeta - \cos \eta}</math>


where ''R<sub>p</sub>'' is the pole of the coordinate system.  
where <math>R_p</math> is the pole of the coordinate system.  
Surfaces of constant ''&zeta;'' are tori with major radii ''R = R<sub>p</sub>''/tanh ''&zeta;'' and minor radii ''r = R<sub>p</sub>''/sinh ''&zeta;''.  
Surfaces of constant <math>\zeta</math> are tori with major radii <math>R = R_p/\tanh \zeta</math> and minor radii <math>r = R_p/\sinh \zeta</math>.  
At ''R = R<sub>p</sub>'', ''&zeta;'' = &infin;, while at infinity and at ''R = 0, &zeta; = 0''.  
At <math>R = R_p</math>, <math>\zeta = \infty</math>, while at infinity and at <math>R = 0, \zeta = 0</math>.  
The coordinate ''&eta;'' is a poloidal angle and runs from 0 to 2&pi;.  
The coordinate <math>\eta</math> is a poloidal angle and runs from 0 to <math>2\pi</math>.  
This system is orthogonal.
This system is orthogonal.


The Laplace equation separates in this system of coordinates, thus allowing an expansion of the vacuum magnetic field in toroidal harmonics.
The Laplace equation separates in this system of coordinates, thus allowing an expansion of the vacuum magnetic field in toroidal harmonics.
<ref>[http://dx.doi.org/10.1088/0029-5515/26/9/002 F. Alladio, F. Crisanti, ''Analysis of MHD equilibria by toroidal multipolar expansions'', Nucl. Fusion '''26''' (1986) 1143]</ref>
<ref>F. Alladio, F. Crisanti, ''Analysis of MHD equilibria by toroidal multipolar expansions'', [[doi:10.1088/0029-5515/26/9/002|Nucl. Fusion '''26''' (1986) 1143]]</ref>
<ref>[http://dx.doi.org/10.1016/0010-4655(94)90112-0 B.Ph. van Milligen and A. Lopez Fraguas, ''Expansion of vacuum magnetic fields in toroidal harmonics'', Computer Physics Communications '''81''', Issues 1-2 (1994) 74-90]</ref>
<ref>B.Ph. van Milligen and A. Lopez Fraguas, ''Expansion of vacuum magnetic fields in toroidal harmonics'', [[doi:10.1016/0010-4655(94)90112-0|Computer Physics Communications '''81''', Issues 1-2 (1994) 74-90]]</ref>


== Magnetic coordinates ==
== Magnetic coordinates ==
Line 60: Line 60:
In 3 dimensions (not assuming axisymmetry), the most commonly used coordinate systems are:
In 3 dimensions (not assuming axisymmetry), the most commonly used coordinate systems are:
<ref name='Dhaeseleer'>W.D. D'haeseleer, ''Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory'', Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193</ref>
<ref name='Dhaeseleer'>W.D. D'haeseleer, ''Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory'', Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193</ref>
* [[Hamada coordinates]]. <ref>[http://dx.doi.org/10.1088/0029-5515/2/1-2/005 S. Hamada, Nucl. Fusion '''2''' (1962) 23]</ref><ref>[http://dx.doi.org/10.1063/1.1706651 J.M. Greene and J.L Johnson, ''Stability Criterion for Arbitrary Hydromagnetic Equilibria'', Phys. Fluids '''5''' (1962) 510]</ref> In these coordinates, both the field lines and current lines corresponding to the [[MHD equilibrium]] are straight.
* [[Hamada coordinates]]. <ref>S. Hamada, [[doi:10.1088/0029-5515/2/1-2/005|Nucl. Fusion '''2''' (1962) 23]]</ref><ref>J.M. Greene and J.L Johnson, ''Stability Criterion for Arbitrary Hydromagnetic Equilibria'', [[doi:10.1063/1.1706651|Phys. Fluids '''5''' (1962) 510]]</ref> In these coordinates, both the field lines and current lines corresponding to the [[MHD equilibrium]] are straight.
* [[Boozer coordinates]]. <ref>[http://dx.doi.org/10.1063/1.863297 A.H. Boozer, ''Plasma equilibrium with rational magnetic surfaces'', Phys. Fluids '''24''' (1981) 1999]</ref><ref>[http://dx.doi.org/10.1063/1.863765 A.H. Boozer, ''Establishment of magnetic coordinates for a given magnetic field'', Phys. Fluids '''25''' (1982) 520]</ref> In these coordinates, the field lines corresponding to the [[MHD equilibrium]] are straight and so are the ''diamagnetic lines '', i.e. the integral lines of <math>\nabla\psi\times\mathbf{B}</math>.  
* [[Boozer coordinates]]. <ref>A.H. Boozer, ''Plasma equilibrium with rational magnetic surfaces'', [[doi:10.1063/1.863297|Phys. Fluids '''24''' (1981) 1999]]</ref><ref>A.H. Boozer, ''Establishment of magnetic coordinates for a given magnetic field'', [[doi:10.1063/1.863765|Phys. Fluids '''25''' (1982) 520]]</ref> In these coordinates, the field lines corresponding to the [[MHD equilibrium]] are straight and so are the ''diamagnetic lines '', i.e. the integral lines of <math>\nabla\psi\times\mathbf{B}</math>.  


These two coordinate systems are related.
These two coordinate systems are related.

Navigation menu