Internal inductance: Difference between revisions

Jump to navigation Jump to search
Line 21: Line 21:
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
Using Ampères Law (<math>2 \pi a B_\theta(a) = \mu_0 I</math>), one finds <math>l_i = 2 \pi l_i'</math>.
Using Ampère's Law (<math>2 \pi a B_\theta(a) = \mu_0 I</math>), one finds <math>l_i = 2 \pi l_i'</math>.


The value of the normalized internal inductance depends on the current density profile in the toroidal plasma (as it produces the <math>B_\theta(\rho)</math> profile).
The value of the normalized internal inductance depends on the current density profile in the toroidal plasma (as it produces the <math>B_\theta(\rho)</math> profile).

Navigation menu