Internal inductance: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 20: Line 20:
Alternatively, sometimes the internal inductance per unit length is used, defined as<ref name="Freidberg"/>
Alternatively, sometimes the internal inductance per unit length is used, defined as<ref name="Freidberg"/>
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
:<math>l_i' = \frac{L_i}{2\pi R_0}\frac{4\pi}{\mu_0} = \frac{2L_i}{\mu_0R_0}</math>
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]] (note <math>l_i = 2 \pi l_i'</math>), and similar for the external inductance.
where ''R<sub>0</sub>'' is the [[Toroidal coordinates|major radius]], and similar for the external inductance.
Using Ampères Law (<math>2 \pi a B_\theta(a) = \mu_0 I</math>), one finds <math>l_i = 2 \pi l_i'</math>.


The value of the normalized internal inductance depends on the current density profile in the toroidal plasma.
The value of the normalized internal inductance depends on the current density profile in the toroidal plasma (as it produces the <math>B_\theta(\rho)</math> profile).


== References ==
== References ==
<references />
<references />

Navigation menu