4,427
edits
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<ref>[http://iopscience.iop.org/0741-3335/53/4/045001 Felix I. Parra and Iván Calvo, ''Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry'', Plasma Phys. Control. Fusion '''53''' (2011) 045001]</ref> is based on first principles and provides a valuable tool for investigating low frequency turbulence in fusion plasmas. | <ref>[http://iopscience.iop.org/0741-3335/53/4/045001 Felix I. Parra and Iván Calvo, ''Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry'', Plasma Phys. Control. Fusion '''53''' (2011) 045001]</ref> is based on first principles and provides a valuable tool for investigating low frequency turbulence in fusion plasmas. | ||
Kinetic theory describes the evolution of the distribution function <math>f(\vec r, \vec v)</math> on the basis of the Vlasov equation: | Kinetic theory describes the evolution of the distribution function <math>f(\vec r, \vec v)</math> on the basis of the [[:Wikipedia:Vlasov equation|Vlasov equation]]: | ||
:<math> | :<math> | ||
\frac{\rm d f}{\rm d t} = \frac{\partial f}{\partial t} + \vec v \cdot \nabla_r f + \frac{q}{M}(\vec E + \vec v \times \vec B)\cdot \nabla_v f = 0 | \frac{\rm d f}{\rm d t} = \frac{\partial f}{\partial t} + \vec v \cdot \nabla_r f + \frac{q}{M}(\vec E + \vec v \times \vec B)\cdot \nabla_v f = 0 |