Toroidal coordinates: Difference between revisions

Jump to navigation Jump to search
Line 245: Line 245:
:<math>
:<math>
\mathbf{B} =  \nabla\psi\times \left( \frac{\Psi_{tor}'}{2\pi}\theta_f
\mathbf{B} =  \nabla\psi\times \left( \frac{\Psi_{tor}'}{2\pi}\theta_f
- \frac{\Psi_{pol}'}{2\pi}\phi_f \right)  
- \frac{\Psi_{pol}'}{2\pi}\phi_f \right)~.
</math>
</math>
Note that, in general, the contravariant components of the magnetic field in a magnetic coordinate system
:<math>
B^{\theta_f} = \frac{\Psi_{pol}'}{2\pi\sqrt{g}}\; ;\quad B^{\phi_f} = \frac{\Psi_{tor}'}{2\pi\sqrt{g}}
</math>
are not flux functions, but their quotient is
:<math>
\frac{B^{\theta_f}}{B^{\phi_f}} = \frac{\Psi_{pol}'}{\Psi_{tor}'} \equiv \frac{\iota}{2\pi}~,
</math>
<math>\iota</math> being the [[rotational transform]].
Any transformation of the angles of the from
:<math>
\theta_F = \theta_f +\Psi_{pol}' G(\psi, \theta_f, \phi_f)\; ;\quad \phi_F = \phi_f +\Psi_{tor}' G(\psi, \theta_f, \phi_f)
</math>
where <math>G</math> is periodic in the angles, preserves the straightness of the field lines. The spatial function <math>G(\psi, \theta_f, \phi_f)</math>, is called the ''generating function''.
Magnetic coordinates adapt to the magnetic field, and therefore to the [[MHD equilibrium]] (also see [[Flux surface]]).  
Magnetic coordinates adapt to the magnetic field, and therefore to the [[MHD equilibrium]] (also see [[Flux surface]]).  
Magnetic coordinates simplify the description of the magnetic field.  
Magnetic coordinates simplify the description of the magnetic field.  
204

edits

Navigation menu