204
edits
Line 245: | Line 245: | ||
:<math> | :<math> | ||
\mathbf{B} = \nabla\psi\times \left( \frac{\Psi_{tor}'}{2\pi}\theta_f | \mathbf{B} = \nabla\psi\times \left( \frac{\Psi_{tor}'}{2\pi}\theta_f | ||
- \frac{\Psi_{pol}'}{2\pi}\phi_f \right) | - \frac{\Psi_{pol}'}{2\pi}\phi_f \right)~. | ||
</math> | </math> | ||
Note that, in general, the contravariant components of the magnetic field in a magnetic coordinate system | |||
:<math> | |||
B^{\theta_f} = \frac{\Psi_{pol}'}{2\pi\sqrt{g}}\; ;\quad B^{\phi_f} = \frac{\Psi_{tor}'}{2\pi\sqrt{g}} | |||
</math> | |||
are not flux functions, but their quotient is | |||
:<math> | |||
\frac{B^{\theta_f}}{B^{\phi_f}} = \frac{\Psi_{pol}'}{\Psi_{tor}'} \equiv \frac{\iota}{2\pi}~, | |||
</math> | |||
<math>\iota</math> being the [[rotational transform]]. | |||
Any transformation of the angles of the from | |||
:<math> | |||
\theta_F = \theta_f +\Psi_{pol}' G(\psi, \theta_f, \phi_f)\; ;\quad \phi_F = \phi_f +\Psi_{tor}' G(\psi, \theta_f, \phi_f) | |||
</math> | |||
where <math>G</math> is periodic in the angles, preserves the straightness of the field lines. The spatial function <math>G(\psi, \theta_f, \phi_f)</math>, is called the ''generating function''. | |||
Magnetic coordinates adapt to the magnetic field, and therefore to the [[MHD equilibrium]] (also see [[Flux surface]]). | Magnetic coordinates adapt to the magnetic field, and therefore to the [[MHD equilibrium]] (also see [[Flux surface]]). | ||
Magnetic coordinates simplify the description of the magnetic field. | Magnetic coordinates simplify the description of the magnetic field. |
edits