Toroidal coordinates: Difference between revisions

Jump to navigation Jump to search
Line 145: Line 145:
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \nabla\cdot\Gamma\; dV
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \nabla\cdot\Gamma\; dV
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{S(\delta V)} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{S(\delta V)} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_0^{2\pi} \int_0^{2\pi} \Gamma\cdot \nabla V\; \sqrt{g} d\theta d\phi = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
= \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
</math>
</math>


204

edits

Navigation menu