204
edits
Line 193: | Line 193: | ||
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as | If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as | ||
:<math> | :<math> | ||
\mathbf{B} = \ | \mathbf{B} = \eta\nabla\psi + \nabla\chi | ||
</math> | </math> | ||
where <math>\chi</math> is identified as the magnetic ''scalar'' potential. | where <math>\chi</math> is identified as the magnetic ''scalar'' potential. |
edits