204
edits
Line 114: | Line 114: | ||
=== Flux Surface Average === | === Flux Surface Average === | ||
The flux surface average of a function <math>\Phi</math> is defined as the limit | The flux surface average of a function <math>\Phi</math> is defined as the limit | ||
:<math> | |||
\langle\Phi\rangle = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \Phi\; dV | \langle\Phi\rangle = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \Phi\; dV | ||
</math | </math> | ||
where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average. | where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average. | ||
Introducing the differential volume element <math>dV = \sqrt{g} d\psi d\theta d\phi</math> | Introducing the differential volume element <math>dV = \sqrt{g} d\psi d\theta d\phi</math> | ||
:<math> | |||
\langle\Phi\rangle | \langle\Phi\rangle | ||
= \lim_{\delta V \to 0} \frac{1}{\delta V}\int_{\delta V} \Phi\; \sqrt{g} d\psi d\theta d\phi | = \lim_{\delta V \to 0} \frac{1}{\delta V}\int_{\delta V} \Phi\; \sqrt{g} d\psi d\theta d\phi | ||
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi | = \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi | ||
</math | </math> | ||
or, noting that <math>\langle 1\rangle = 1</math>, we have <math>\frac{dV}{d\psi} = \int_0^{2\pi}\int_0^{2\pi} \sqrt{g} d\theta d\phi</math> and | or, noting that <math>\langle 1\rangle = 1</math>, we have <math>\frac{dV}{d\psi} = \int_0^{2\pi}\int_0^{2\pi} \sqrt{g} d\theta d\phi</math> and | ||
we get to a more practical form of the Flux Surface Average | we get to a more practical form of the Flux Surface Average | ||
:<math> | |||
\langle\Phi\rangle | \langle\Phi\rangle | ||
= \frac{\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi} | = \frac{\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi} | ||
{\int_0^{2\pi}\int_0^{2\pi} \sqrt{g} d\theta d\phi} | {\int_0^{2\pi}\int_0^{2\pi} \sqrt{g} d\theta d\phi} | ||
</math | </math> | ||
Note that <math>dS = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> : | Note that <math>dS = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> : | ||
:<math> | |||
\langle\Phi\rangle | \langle\Phi\rangle | ||
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi | = \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi | ||
= \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; dS | = \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; dS | ||
= \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; dS | = \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; dS | ||
</math | </math> | ||
Applying Gauss' theorem to the definition of FSA we get to the identity | Applying Gauss' theorem to the definition of FSA we get to the identity | ||
:<math> | |||
\langle\nabla\cdot\Gamma\rangle | \langle\nabla\cdot\Gamma\rangle | ||
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \nabla\cdot\Gamma\; dV | = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \nabla\cdot\Gamma\; dV | ||
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{S(\delta V)} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS | = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{S(\delta V)} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS | ||
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_0^{2\pi} \int_0^{2\pi} \Gamma\cdot \nabla V\; \sqrt{g} d\theta d\phi = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~. | = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_0^{2\pi} \int_0^{2\pi} \Gamma\cdot \nabla V\; \sqrt{g} d\theta d\phi = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~. | ||
</math | </math> | ||
==== Useful properties of FSA ==== | ==== Useful properties of FSA ==== |
edits