LNF: Tecnologías de Litio críticas para IFMIF-DONES: Difference between revisions

Jump to navigation Jump to search
 
Line 36: Line 36:


== References ==
== References ==
  Knaster, J et al., The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source. Nuclear Fusion 2015, 55 (8), 086003. https://doi.org/10.1088/0029-5515/55/8/086003  
#Knaster, J et al., The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source. Nuclear Fusion 2015, 55 (8), 086003. https://doi.org/10.1088/0029-5515/55/8/086003  
  Królas et al.., The IFMIF-DONES fusion oriented neutron source: evolution of the design. Nuclear Fusion 2021, 61 (12), 125002. https://dx.doi.org/10.1088/1741-4326/ac318f
#Królas et al.., The IFMIF-DONES fusion oriented neutron source: evolution of the design. Nuclear Fusion 2021, 61 (12), 125002. https://dx.doi.org/10.1088/1741-4326/ac318f
  R. Fernández Saavedra, A. Quejido, Analytical methodology for determination of metallic impurities in lithium, Eurofusion Report, IDM Ref. No: 2QP5VX (2023)
#R. Fernández Saavedra, A. Quejido, Analytical methodology for determination of metallic impurities in lithium, Eurofusion Report, IDM Ref. No: 2QP5VX (2023)
  Hobart EW, Bjork RG. Validity of determining carbon in lithium by measurement of acetylene evolved on hydrolysis. Analytical Chemistry 1967; 39: 202-5
#Hobart EW, Bjork RG. Validity of determining carbon in lithium by measurement of acetylene evolved on hydrolysis. Analytical Chemistry 1967; 39: 202-5
  Sax HI, Steinmetz H. Determination of oxygen in lithium metal. United States, 1958. https://doi.org/10.2172/4298798  
#Sax HI, Steinmetz H. Determination of oxygen in lithium metal. United States, 1958. https://doi.org/10.2172/4298798  
  Gahn RF. Determination of oxygen in lithium by the vacuum distillation method. Analytical Chemistry 41 (1969) 1303-6
#Gahn RF. Determination of oxygen in lithium by the vacuum distillation method. Analytical Chemistry 41 (1969) 1303-6
  H. Yamamoto, M. Murase, S. Izumi, N. Sagawa. “Investigation of Measuring Accuracy of Pluging indicators”. Journal of Nuclear Science and Technology 14:10 (1977) 689-694.
#H. Yamamoto, M. Murase, S. Izumi, N. Sagawa. “Investigation of Measuring Accuracy of Pluging indicators”. Journal of Nuclear Science and Technology 14:10 (1977) 689-694.
  J.L. Anderson, D.H. Carstens and R.M. Alire “CTR Related tritium research at LASL” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 396, J.S. Watson and J.W. Wiffen Eds. (1976)
#J.L. Anderson, D.H. Carstens and R.M. Alire “CTR Related tritium research at LASL” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 396, J.S. Watson and J.W. Wiffen Eds. (1976)
  P. Hubberstey, P.F. Adams and R.J. Pulham “Hydrogen isotope removal from liquid lithium: use of yttrium sponge as a getter” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 270, J.S. Watson and J.W. Wiffen Eds. (1976).
#P. Hubberstey, P.F. Adams and R.J. Pulham “Hydrogen isotope removal from liquid lithium: use of yttrium sponge as a getter” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 270, J.S. Watson and J.W. Wiffen Eds. (1976).
  T. Takeda, A. Ying and M.A. Abdou. “Analysis of tritium extraction from liquid lithium by permeation window and solid gettering processes”. Fusion Engineering and Design 28 (1995) 278-285. DOI: 10.1016/0920-3796(95)90049-7
#T. Takeda, A. Ying and M.A. Abdou. “Analysis of tritium extraction from liquid lithium by permeation window and solid gettering processes”. Fusion Engineering and Design 28 (1995) 278-285. DOI: 10.1016/0920-3796(95)90049-7
  C. Bessouet et al., "Characterization of the activation of yttrium-based getter films by electrical measurements and ion-beam analyses," 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 2019, pp. 1-4, doi: 10.1109/DTIP.2019.8752932
#C. Bessouet et al., "Characterization of the activation of yttrium-based getter films by electrical measurements and ion-beam analyses," 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 2019, pp. 1-4, doi: 10.1109/DTIP.2019.8752932
  M. Kinoshita et al., Experimental study of tritium recovery from liquid lithium by yttrium, Fusion Engineering and Design 81 (2006) 567-571. DOI: j.fusengdes.2005.04.003
#M. Kinoshita et al., Experimental study of tritium recovery from liquid lithium by yttrium, Fusion Engineering and Design 81 (2006) 567-571. DOI: j.fusengdes.2005.04.003
  A.B. Hull, O. K. Chopra, B. Loomis, D. L. Smith, Partitioning of Hydrogen in the Vanadium-Lithium-Hydrogen system at elevated temperatures. Eighth Topical Meeting on the Technology of Fusion, Energy, Salt Lake City, Utah, October 9-13, 1988
#A.B. Hull, O. K. Chopra, B. Loomis, D. L. Smith, Partitioning of Hydrogen in the Vanadium-Lithium-Hydrogen system at elevated temperatures. Eighth Topical Meeting on the Technology of Fusion, Energy, Salt Lake City, Utah, October 9-13, 1988
  Y. Wu, Y. Edao, S. Fukada, H. Nakamura, H. Kondo, Removal rates of hydrogen isotope from liquid Li by HF-treated Y plate, Fusion Engineering and Design, 85, (2010) 1484-1487, DOI: 10.1016/j.fusengdes.2010.04.022
#Y. Wu, Y. Edao, S. Fukada, H. Nakamura, H. Kondo, Removal rates of hydrogen isotope from liquid Li by HF-treated Y plate, Fusion Engineering and Design, 85, (2010) 1484-1487, DOI: 10.1016/j.fusengdes.2010.04.022
  Y. Hatachi et al., Analysis of hydrogen isotopes absorption between liquid lithium and yttrium under dynamic conditions, Fusion Engineering and Design, 87 (2012) 1457-1460. DOI: j.fusengdes.2012.03.032
#Y. Hatachi et al., Analysis of hydrogen isotopes absorption between liquid lithium and yttrium under dynamic conditions, Fusion Engineering and Design, 87 (2012) 1457-1460. DOI: j.fusengdes.2012.03.032
  A. Stern, A. Resnik and D. Shaltiel, Thermal desorption spectra of hydrogen in HfV2Hx and ZrV2Hx, Journal of the Less-Common Metals, 1982, 88, 431-440, https://doi.org/10.1016/0022-5088(82)90252-1
#A. Stern, A. Resnik and D. Shaltiel, Thermal desorption spectra of hydrogen in HfV2Hx and ZrV2Hx, Journal of the Less-Common Metals, 1982, 88, 431-440, https://doi.org/10.1016/0022-5088(82)90252-1
  S. J. Hendricks, Modeling and experimental design to characterize permeation and gettering of hydrogen isotopes in fusion materials, PhD Thesis, http://hdl.handle.net/10016/38077 (2023)
#S. J. Hendricks, Modeling and experimental design to characterize permeation and gettering of hydrogen isotopes in fusion materials, PhD Thesis, http://hdl.handle.net/10016/38077 (2023)
  S. J. Hendricks, J. Molla, F. R. Urgorri, E. Carella, Impact of yttrium hydride formation on multi-isotopic hydrogen retention by a getter trap for the DONES lithium loop. Nuclear Fusion 63 (2023) 056012. DOI: 10.1088/1741-4326/acc31a   
#S. J. Hendricks, J. Molla, F. R. Urgorri, E. Carella, Impact of yttrium hydride formation on multi-isotopic hydrogen retention by a getter trap for the DONES lithium loop. Nuclear Fusion 63 (2023) 056012. DOI: 10.1088/1741-4326/acc31a   
  T. Sakurai et al., Control of the nitrogen concentration in liquid lithium by the hot trap method, Journal of Nuclear Materials 307–311, Part 2 (2002) 1380-1385 DOI: 10.1016/S0022-3115(02)01125-X
#T. Sakurai et al., Control of the nitrogen concentration in liquid lithium by the hot trap method, Journal of Nuclear Materials 307–311, Part 2 (2002) 1380-1385 DOI: 10.1016/S0022-3115(02)01125-X
  D. Martelli, G. Barone, M. Tarantino, M. Utili, Design of a new experimental loop and of a coolant purifying system for corrosion experiments of EUROFER samples in flowing PbLi environment, Fusion Engineering and Design 124 (2017) Pages 1144-1149, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2017.01.054
#D. Martelli, G. Barone, M. Tarantino, M. Utili, Design of a new experimental loop and of a coolant purifying system for corrosion experiments of EUROFER samples in flowing PbLi environment, Fusion Engineering and Design 124 (2017) Pages 1144-1149, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2017.01.054
  B.R. Grundy “Experimental characterization of sodium cold traps and modelling of their behaviour” Proc. Int. Conf. on Liq. Met. Tech. in En. Prod., Champion (1976) 650
#B.R. Grundy “Experimental characterization of sodium cold traps and modelling of their behaviour” Proc. Int. Conf. on Liq. Met. Tech. in En. Prod., Champion (1976) 650
  C. C. McPheeters, MASS TRANSFER OF OXYGEN IN SODIUM COLD TRAPS, Technical Report UCA (USA), doi:10.2172/4505711  (1968)
#C. C. McPheeters, MASS TRANSFER OF OXYGEN IN SODIUM COLD TRAPS, Technical Report UCA (USA), doi:10.2172/4505711  (1968)
  B C Goplen, J C, Biery, and C C. McPheeters, NUMERICAL SIMULATION OF A COLD TRAP FOR SODIUM PURIFICATION, Technical Report UCA (USA). doi: 10.2172/4130823.(1970)
#B C Goplen, J C, Biery, and C C. McPheeters, NUMERICAL SIMULATION OF A COLD TRAP FOR SODIUM PURIFICATION, Technical Report UCA (USA). doi: 10.2172/4130823.(1970)
  S. D. Clinton and J. S. Watson, the solubility of tritium in yttrium at temperatures from 250 to 400 “C. Journal of the Less-Common Metals, 66 (1979) 51 - 57
#S. D. Clinton and J. S. Watson, the solubility of tritium in yttrium at temperatures from 250 to 400 “C. Journal of the Less-Common Metals, 66 (1979) 51 - 57
  H. Nakamura, M. Ida, M. Sugimoto, T. Yutani & H. Takeuchi (2002) Removal and Control of Tritium in Lithium Target for International Fusion Materials Irradiation Facility (IFMIF), Fusion Science and Technology, 41:3P2 (2002) 845--849, DOI: 10.13182/FST02-A22704
#H. Nakamura, M. Ida, M. Sugimoto, T. Yutani & H. Takeuchi (2002) Removal and Control of Tritium in Lithium Target for International Fusion Materials Irradiation Facility (IFMIF), Fusion Science and Technology, 41:3P2 (2002) 845--849, DOI: 10.13182/FST02-A22704
  Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; et al. Round Robin test for the determination of nitrogen concentration in solid lithium. Fusion Eng. Des. 107 (2016) 13–24. DOI: 10.1016/j.fusengdes.2016.03.026
#Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; et al. Round Robin test for the determination of nitrogen concentration in solid lithium. Fusion Eng. Des. 107 (2016) 13–24. DOI: 10.1016/j.fusengdes.2016.03.026
  Marinari, R.; Favuzza, P.; Bernardi, D.; Nitti, F.S.; Di Piazza, I. CFD Optimization of the Resistivity Meter for the IFMIF-DONES Facility. Energies 2021, 14, 2543. DOI: 10.3390/en14092543
Marinari, R.; Favuzza, P.; Bernardi, D.; Nitti, F.S.; Di Piazza, I. CFD Optimization of the Resistivity Meter for the IFMIF-DONES Facility. Energies 2021, 14, 2543. DOI: 10.3390/en14092543
  A. Aiello, A. Tincani, P. Favuzza, F.S. Nitti 1, L. Sansone, G. Miccichè, M. Muzzarelli, G. Fasano, P. Agostini, “Lifus (lithium for fusion) 6 loop design and construction”, Fusion Engineering and Design 88 (2013) 769-773
A. Aiello, A. Tincani, P. Favuzza, F.S. Nitti 1, L. Sansone, G. Miccichè, M. Muzzarelli, G. Fasano, P. Agostini, “Lifus (lithium for fusion) 6 loop design and construction”, Fusion Engineering and Design 88 (2013) 769-773
  A.Ferreira da Silva, J. Pernot, S. Contreras, B. Sernelius, C. Persson, J. Camassel, “electrical resistivity and metal-nometal transition in n-type doped 4h-SiC” Phys. Rev. B 74 (2006) 24 doi.org/10.1103/PhysRevB.74.245201
A.Ferreira da Silva, J. Pernot, S. Contreras, B. Sernelius, C. Persson, J. Camassel, “electrical resistivity and metal-nometal transition in n-type doped 4h-SiC” Phys. Rev. B 74 (2006) 24 doi.org/10.1103/PhysRevB.74.245201
  H. Kondo et al., Completion of IFMIF/EVEDA lithium test loop construction, Fusion Engineering and Design 87 (2012) 418-422, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2011.11.011.
H. Kondo et al., Completion of IFMIF/EVEDA lithium test loop construction, Fusion Engineering and Design 87 (2012) 418-422, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2011.11.011.
  P. Favuzza, A. Antonelli, M. Cuzzani, G. Fasano, S. Mannori, Final Validation Report of the Lifus 6 Purification System, Deliverable: LF 4.5.2 IFMIF/EVEDA Report DMS Ref. No: BA_D_23PVKK (2016)
P. Favuzza, A. Antonelli, M. Cuzzani, G. Fasano, S. Mannori, Final Validation Report of the Lifus 6 Purification System, Deliverable: LF 4.5.2 IFMIF/EVEDA Report DMS Ref. No: BA_D_23PVKK (2016)
  Y. Ito, M. Hirano, H. Tanaka, E. Wakai, S. Fukada, A. Suzuki, T. Higashi, J. Yagi, Validation Report of Purification System by Fundamental Experiments in Laboratory Scale at the Japanese Universities, Deliverable LF4.3.2 IFMIF/EVEDA Project, IFMIF/EVEDA Report DMS Ref. No: BA_D_248V9J (2015)
Y. Ito, M. Hirano, H. Tanaka, E. Wakai, S. Fukada, A. Suzuki, T. Higashi, J. Yagi, Validation Report of Purification System by Fundamental Experiments in Laboratory Scale at the Japanese Universities, Deliverable LF4.3.2 IFMIF/EVEDA Project, IFMIF/EVEDA Report DMS Ref. No: BA_D_248V9J (2015)
  Procurement Arrangement LF06-2 JA for the Fusion Neutron Source Target Research & Development 2021-2025 (QST Contribution) for the IFMIF/EVEDA Project during BA phase II, IFMIF/EVEDA Report DMS Ref. No: BA_D_27RXT8 (2021)
Procurement Arrangement LF06-2 JA for the Fusion Neutron Source Target Research & Development 2021-2025 (QST Contribution) for the IFMIF/EVEDA Project during BA phase II, IFMIF/EVEDA Report DMS Ref. No: BA_D_27RXT8 (2021)
  Oyaidzu Makoto, Design of the 1:10 pilot purification plant including the pilot plugging monitor, IFMIF/EVEDA Report DMS Ref. No: BA_D_ 28Z5AG (2022)
Oyaidzu Makoto, Design of the 1:10 pilot purification plant including the pilot plugging monitor, IFMIF/EVEDA Report DMS Ref. No: BA_D_ 28Z5AG (2022)
  P. Favuzza, Task Spec. 2022 ENEA contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PTZUX (2022)
P. Favuzza, Task Spec. 2022 ENEA contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PTZUX (2022)
  S. Gordeev, Task Spec. 2022 KIT contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PU452 (2022)
S. Gordeev, Task Spec. 2022 KIT contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PU452 (2022)
  Creffrey, G.K.; Down, M.G.; Pulham, R.J. “Electrical Resistivity of Liquid and Solid Lithium”. J. Chem. Soc. Dalton Trans. 21 (1974) 2325–2329 https://doi.org/10.1039/DT9740002325
Creffrey, G.K.; Down, M.G.; Pulham, R.J. “Electrical Resistivity of Liquid and Solid Lithium”. J. Chem. Soc. Dalton Trans. 21 (1974) 2325–2329 https://doi.org/10.1039/DT9740002325
  Hubberstey, P., “Dissolved nitrogen in liquid‐lithium a problem in fusion reactor chemistry”, Liquid metal engineering and technology. 3 v. Proc. 3. Int. conference held in Oxford on 9‐13 (1984) BNES 1984 v.2, 85‐91
Hubberstey, P., “Dissolved nitrogen in liquid‐lithium a problem in fusion reactor chemistry”, Liquid metal engineering and technology. 3 v. Proc. 3. Int. conference held in Oxford on 9‐13 (1984) BNES 1984 v.2, 85‐91
  Hubberstey, P.; Roberts, P.G. “Corrosion chemistry of vanadium in liquid lithium containing dissolved nitrogen”. J. Nucl. Mater 1555157 (1988) 694–697 doi:10.1016/0022-3115(88)90397-2
Hubberstey, P.; Roberts, P.G. “Corrosion chemistry of vanadium in liquid lithium containing dissolved nitrogen”. J. Nucl. Mater 1555157 (1988) 694–697 doi:10.1016/0022-3115(88)90397-2
  F. Barbier, “Continuous monitoring and adjusment of the lithium content in liquid Pb Li alloys: assessment of and electrical resistivity meter in a loop system”. Fusion Engineering and Design, 36 (1997) 299-308 https://doi.org/10.1016/S0920-3796(96)00697-7
F. Barbier, “Continuous monitoring and adjusment of the lithium content in liquid Pb Li alloys: assessment of and electrical resistivity meter in a loop system”. Fusion Engineering and Design, 36 (1997) 299-308 https://doi.org/10.1016/S0920-3796(96)00697-7
  D.W. Jeppson, Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols, 1979. https://doi.org/10.2172/6122331.  
D.W. Jeppson, Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols, 1979. https://doi.org/10.2172/6122331.  
  D.W. Jeppson, Scoping studies: behavior and control of lithium and lithium aerosols, 1982. https://doi.org/10.2172/5182052.  
D.W. Jeppson, Scoping studies: behavior and control of lithium and lithium aerosols, 1982. https://doi.org/10.2172/5182052.  
  D.W. Jeppson, Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests, United States, 1986. https://inis.iaea.org/search/18000591.
D.W. Jeppson, Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests, United States, 1986. https://inis.iaea.org/search/18000591.
  D.S. Barnett, T.K. Gil, M.S. Kazimi, Lithium-Mixed Gas Reactions, Fusion Technology 15 (1989) 967–972. https://doi.org/10.13182/FST89-A39818.
D.S. Barnett, T.K. Gil, M.S. Kazimi, Lithium-Mixed Gas Reactions, Fusion Technology 15 (1989) 967–972. https://doi.org/10.13182/FST89-A39818.
  S.J. Piet, D.W. Jeppson, L.D. Muhlestein, M.S. Kazimi, M.L. Corradini, Liquid metal chemical reaction safety in fusion facilities, Fus. Engin. and Design 5 (1987) 273–298. https://doi.org/10.1016/S0920-3796(87)90032-9.
S.J. Piet, D.W. Jeppson, L.D. Muhlestein, M.S. Kazimi, M.L. Corradini, Liquid metal chemical reaction safety in fusion facilities, Fus. Engin. and Design 5 (1987) 273–298. https://doi.org/10.1016/S0920-3796(87)90032-9.
  R.A. Rhein, Lithium Combustion: A Review, Defense Technical Information Center, Fort Belvoir, VA, 1990. https://doi.org/10.21236/ADA238154.  
R.A. Rhein, Lithium Combustion: A Review, Defense Technical Information Center, Fort Belvoir, VA, 1990. https://doi.org/10.21236/ADA238154.  
  M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D.Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172.  
M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D.Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172.  
  G. D’Ovidio, F. Martín-Fuertes, D. Alegre, J.C. Marugán, A. Pitigoi, J. Sierra, J. Molla, CIEMAT experimental proposal on lithium ignition in support of DONES licensing (LiFIRE facility), Nuclear Materials and Energy 31 (2022) 101177. https://doi.org/10.1016/j.nme.2022.101177.  
G. D’Ovidio, F. Martín-Fuertes, D. Alegre, J.C. Marugán, A. Pitigoi, J. Sierra, J. Molla, CIEMAT experimental proposal on lithium ignition in support of DONES licensing (LiFIRE facility), Nuclear Materials and Energy 31 (2022) 101177. https://doi.org/10.1016/j.nme.2022.101177.  
  C.C. McPheeters, J.C. Biery. “The Dynamic Characteristics of Plugging Indicator for Sodium”. Nuclear Applications 6:6 (1969) 573-581. DOI: https://doi.org/10.13182/NT69-A28287
C.C. McPheeters, J.C. Biery. “The Dynamic Characteristics of Plugging Indicator for Sodium”. Nuclear Applications 6:6 (1969) 573-581. DOI: https://doi.org/10.13182/NT69-A28287
  Feron, D. (1982). Plugging Indicator - Measurement of Low Impurity Concentrations at a Constant Orifice Temperature. In: Borgstedt, H.U. (eds) Material Behavior and Physical Chemistry in Liquid Metal Systems. Springer, Boston, MA. pp.89-96. DOI: https://doi.org/10.1007/978-1-4684-8366-6_9
Feron, D. (1982). Plugging Indicator - Measurement of Low Impurity Concentrations at a Constant Orifice Temperature. In: Borgstedt, H.U. (eds) Material Behavior and Physical Chemistry in Liquid Metal Systems. Springer, Boston, MA. pp.89-96. DOI: https://doi.org/10.1007/978-1-4684-8366-6_9
  N. Holstein, W. Krauss, J. Konys, F.S. Nitti “Development of an electrochemical sensor for hydrogen detection in liquid lithium for IFMIF-DONES” Fusion Engineering and Design 146 (2019) Pages 1441-1445 https://doi.org/10.1016/j.fusengdes.2019.02.100
N. Holstein, W. Krauss, J. Konys, F.S. Nitti “Development of an electrochemical sensor for hydrogen detection in liquid lithium for IFMIF-DONES” Fusion Engineering and Design 146 (2019) Pages 1441-1445 https://doi.org/10.1016/j.fusengdes.2019.02.100
  N. Holstein, W. Krauss, F.S. Nitti “Electrochemical hydrogen detection in DONES loop materials” Nuclear Materials and Energy 31 (2022) 101192 DOI: https://doi.org/10.1016/j.nme.2022.101192
N. Holstein, W. Krauss, F.S. Nitti “Electrochemical hydrogen detection in DONES loop materials” Nuclear Materials and Energy 31 (2022) 101192 DOI: https://doi.org/10.1016/j.nme.2022.101192
  M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172.
M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172.
  J. Peng, H. Li, L. Chen, F. Wu, Application of Liquid Metal Electrodes in Electrochemical Energy Storage, Precision Chemistry 1 (2023) 452–467. https://doi.org/10.1021/prechem.3c00030.
J. Peng, H. Li, L. Chen, F. Wu, Application of Liquid Metal Electrodes in Electrochemical Energy Storage, Precision Chemistry 1 (2023) 452–467. https://doi.org/10.1021/prechem.3c00030.
   
   


6

edits

Navigation menu