6
edits
Line 36: | Line 36: | ||
== References == | == References == | ||
#Knaster, J et al., The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source. Nuclear Fusion 2015, 55 (8), 086003. https://doi.org/10.1088/0029-5515/55/8/086003 | |||
#Królas et al.., The IFMIF-DONES fusion oriented neutron source: evolution of the design. Nuclear Fusion 2021, 61 (12), 125002. https://dx.doi.org/10.1088/1741-4326/ac318f | |||
#R. Fernández Saavedra, A. Quejido, Analytical methodology for determination of metallic impurities in lithium, Eurofusion Report, IDM Ref. No: 2QP5VX (2023) | |||
#Hobart EW, Bjork RG. Validity of determining carbon in lithium by measurement of acetylene evolved on hydrolysis. Analytical Chemistry 1967; 39: 202-5 | |||
#Sax HI, Steinmetz H. Determination of oxygen in lithium metal. United States, 1958. https://doi.org/10.2172/4298798 | |||
#Gahn RF. Determination of oxygen in lithium by the vacuum distillation method. Analytical Chemistry 41 (1969) 1303-6 | |||
#H. Yamamoto, M. Murase, S. Izumi, N. Sagawa. “Investigation of Measuring Accuracy of Pluging indicators”. Journal of Nuclear Science and Technology 14:10 (1977) 689-694. | |||
#J.L. Anderson, D.H. Carstens and R.M. Alire “CTR Related tritium research at LASL” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 396, J.S. Watson and J.W. Wiffen Eds. (1976) | |||
#P. Hubberstey, P.F. Adams and R.J. Pulham “Hydrogen isotope removal from liquid lithium: use of yttrium sponge as a getter” Proc. Int. Conf. Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennesse, September 30 – October 3, 1975, CONF-750989, III, 270, J.S. Watson and J.W. Wiffen Eds. (1976). | |||
#T. Takeda, A. Ying and M.A. Abdou. “Analysis of tritium extraction from liquid lithium by permeation window and solid gettering processes”. Fusion Engineering and Design 28 (1995) 278-285. DOI: 10.1016/0920-3796(95)90049-7 | |||
#C. Bessouet et al., "Characterization of the activation of yttrium-based getter films by electrical measurements and ion-beam analyses," 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 2019, pp. 1-4, doi: 10.1109/DTIP.2019.8752932 | |||
#M. Kinoshita et al., Experimental study of tritium recovery from liquid lithium by yttrium, Fusion Engineering and Design 81 (2006) 567-571. DOI: j.fusengdes.2005.04.003 | |||
#A.B. Hull, O. K. Chopra, B. Loomis, D. L. Smith, Partitioning of Hydrogen in the Vanadium-Lithium-Hydrogen system at elevated temperatures. Eighth Topical Meeting on the Technology of Fusion, Energy, Salt Lake City, Utah, October 9-13, 1988 | |||
#Y. Wu, Y. Edao, S. Fukada, H. Nakamura, H. Kondo, Removal rates of hydrogen isotope from liquid Li by HF-treated Y plate, Fusion Engineering and Design, 85, (2010) 1484-1487, DOI: 10.1016/j.fusengdes.2010.04.022 | |||
#Y. Hatachi et al., Analysis of hydrogen isotopes absorption between liquid lithium and yttrium under dynamic conditions, Fusion Engineering and Design, 87 (2012) 1457-1460. DOI: j.fusengdes.2012.03.032 | |||
#A. Stern, A. Resnik and D. Shaltiel, Thermal desorption spectra of hydrogen in HfV2Hx and ZrV2Hx, Journal of the Less-Common Metals, 1982, 88, 431-440, https://doi.org/10.1016/0022-5088(82)90252-1 | |||
#S. J. Hendricks, Modeling and experimental design to characterize permeation and gettering of hydrogen isotopes in fusion materials, PhD Thesis, http://hdl.handle.net/10016/38077 (2023) | |||
#S. J. Hendricks, J. Molla, F. R. Urgorri, E. Carella, Impact of yttrium hydride formation on multi-isotopic hydrogen retention by a getter trap for the DONES lithium loop. Nuclear Fusion 63 (2023) 056012. DOI: 10.1088/1741-4326/acc31a | |||
#T. Sakurai et al., Control of the nitrogen concentration in liquid lithium by the hot trap method, Journal of Nuclear Materials 307–311, Part 2 (2002) 1380-1385 DOI: 10.1016/S0022-3115(02)01125-X | |||
#D. Martelli, G. Barone, M. Tarantino, M. Utili, Design of a new experimental loop and of a coolant purifying system for corrosion experiments of EUROFER samples in flowing PbLi environment, Fusion Engineering and Design 124 (2017) Pages 1144-1149, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2017.01.054 | |||
#B.R. Grundy “Experimental characterization of sodium cold traps and modelling of their behaviour” Proc. Int. Conf. on Liq. Met. Tech. in En. Prod., Champion (1976) 650 | |||
#C. C. McPheeters, MASS TRANSFER OF OXYGEN IN SODIUM COLD TRAPS, Technical Report UCA (USA), doi:10.2172/4505711 (1968) | |||
#B C Goplen, J C, Biery, and C C. McPheeters, NUMERICAL SIMULATION OF A COLD TRAP FOR SODIUM PURIFICATION, Technical Report UCA (USA). doi: 10.2172/4130823.(1970) | |||
#S. D. Clinton and J. S. Watson, the solubility of tritium in yttrium at temperatures from 250 to 400 “C. Journal of the Less-Common Metals, 66 (1979) 51 - 57 | |||
#H. Nakamura, M. Ida, M. Sugimoto, T. Yutani & H. Takeuchi (2002) Removal and Control of Tritium in Lithium Target for International Fusion Materials Irradiation Facility (IFMIF), Fusion Science and Technology, 41:3P2 (2002) 845--849, DOI: 10.13182/FST02-A22704 | |||
#Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; et al. Round Robin test for the determination of nitrogen concentration in solid lithium. Fusion Eng. Des. 107 (2016) 13–24. DOI: 10.1016/j.fusengdes.2016.03.026 | |||
# Marinari, R.; Favuzza, P.; Bernardi, D.; Nitti, F.S.; Di Piazza, I. CFD Optimization of the Resistivity Meter for the IFMIF-DONES Facility. Energies 2021, 14, 2543. DOI: 10.3390/en14092543 | |||
# A. Aiello, A. Tincani, P. Favuzza, F.S. Nitti 1, L. Sansone, G. Miccichè, M. Muzzarelli, G. Fasano, P. Agostini, “Lifus (lithium for fusion) 6 loop design and construction”, Fusion Engineering and Design 88 (2013) 769-773 | |||
# A.Ferreira da Silva, J. Pernot, S. Contreras, B. Sernelius, C. Persson, J. Camassel, “electrical resistivity and metal-nometal transition in n-type doped 4h-SiC” Phys. Rev. B 74 (2006) 24 doi.org/10.1103/PhysRevB.74.245201 | |||
# H. Kondo et al., Completion of IFMIF/EVEDA lithium test loop construction, Fusion Engineering and Design 87 (2012) 418-422, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2011.11.011. | |||
# P. Favuzza, A. Antonelli, M. Cuzzani, G. Fasano, S. Mannori, Final Validation Report of the Lifus 6 Purification System, Deliverable: LF 4.5.2 IFMIF/EVEDA Report DMS Ref. No: BA_D_23PVKK (2016) | |||
# Y. Ito, M. Hirano, H. Tanaka, E. Wakai, S. Fukada, A. Suzuki, T. Higashi, J. Yagi, Validation Report of Purification System by Fundamental Experiments in Laboratory Scale at the Japanese Universities, Deliverable LF4.3.2 IFMIF/EVEDA Project, IFMIF/EVEDA Report DMS Ref. No: BA_D_248V9J (2015) | |||
# Procurement Arrangement LF06-2 JA for the Fusion Neutron Source Target Research & Development 2021-2025 (QST Contribution) for the IFMIF/EVEDA Project during BA phase II, IFMIF/EVEDA Report DMS Ref. No: BA_D_27RXT8 (2021) | |||
# Oyaidzu Makoto, Design of the 1:10 pilot purification plant including the pilot plugging monitor, IFMIF/EVEDA Report DMS Ref. No: BA_D_ 28Z5AG (2022) | |||
# P. Favuzza, Task Spec. 2022 ENEA contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PTZUX (2022) | |||
# S. Gordeev, Task Spec. 2022 KIT contribution to Lithium Systems area, Eurofusion Report, IDM Ref. No: EFDA_D_2PU452 (2022) | |||
# Creffrey, G.K.; Down, M.G.; Pulham, R.J. “Electrical Resistivity of Liquid and Solid Lithium”. J. Chem. Soc. Dalton Trans. 21 (1974) 2325–2329 https://doi.org/10.1039/DT9740002325 | |||
# Hubberstey, P., “Dissolved nitrogen in liquid‐lithium a problem in fusion reactor chemistry”, Liquid metal engineering and technology. 3 v. Proc. 3. Int. conference held in Oxford on 9‐13 (1984) BNES 1984 v.2, 85‐91 | |||
# Hubberstey, P.; Roberts, P.G. “Corrosion chemistry of vanadium in liquid lithium containing dissolved nitrogen”. J. Nucl. Mater 1555157 (1988) 694–697 doi:10.1016/0022-3115(88)90397-2 | |||
# F. Barbier, “Continuous monitoring and adjusment of the lithium content in liquid Pb Li alloys: assessment of and electrical resistivity meter in a loop system”. Fusion Engineering and Design, 36 (1997) 299-308 https://doi.org/10.1016/S0920-3796(96)00697-7 | |||
# D.W. Jeppson, Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols, 1979. https://doi.org/10.2172/6122331. | |||
# D.W. Jeppson, Scoping studies: behavior and control of lithium and lithium aerosols, 1982. https://doi.org/10.2172/5182052. | |||
# D.W. Jeppson, Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests, United States, 1986. https://inis.iaea.org/search/18000591. | |||
# D.S. Barnett, T.K. Gil, M.S. Kazimi, Lithium-Mixed Gas Reactions, Fusion Technology 15 (1989) 967–972. https://doi.org/10.13182/FST89-A39818. | |||
# S.J. Piet, D.W. Jeppson, L.D. Muhlestein, M.S. Kazimi, M.L. Corradini, Liquid metal chemical reaction safety in fusion facilities, Fus. Engin. and Design 5 (1987) 273–298. https://doi.org/10.1016/S0920-3796(87)90032-9. | |||
# R.A. Rhein, Lithium Combustion: A Review, Defense Technical Information Center, Fort Belvoir, VA, 1990. https://doi.org/10.21236/ADA238154. | |||
# M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D.Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172. | |||
# G. D’Ovidio, F. Martín-Fuertes, D. Alegre, J.C. Marugán, A. Pitigoi, J. Sierra, J. Molla, CIEMAT experimental proposal on lithium ignition in support of DONES licensing (LiFIRE facility), Nuclear Materials and Energy 31 (2022) 101177. https://doi.org/10.1016/j.nme.2022.101177. | |||
# C.C. McPheeters, J.C. Biery. “The Dynamic Characteristics of Plugging Indicator for Sodium”. Nuclear Applications 6:6 (1969) 573-581. DOI: https://doi.org/10.13182/NT69-A28287 | |||
# Feron, D. (1982). Plugging Indicator - Measurement of Low Impurity Concentrations at a Constant Orifice Temperature. In: Borgstedt, H.U. (eds) Material Behavior and Physical Chemistry in Liquid Metal Systems. Springer, Boston, MA. pp.89-96. DOI: https://doi.org/10.1007/978-1-4684-8366-6_9 | |||
# N. Holstein, W. Krauss, J. Konys, F.S. Nitti “Development of an electrochemical sensor for hydrogen detection in liquid lithium for IFMIF-DONES” Fusion Engineering and Design 146 (2019) Pages 1441-1445 https://doi.org/10.1016/j.fusengdes.2019.02.100 | |||
# N. Holstein, W. Krauss, F.S. Nitti “Electrochemical hydrogen detection in DONES loop materials” Nuclear Materials and Energy 31 (2022) 101192 DOI: https://doi.org/10.1016/j.nme.2022.101192 | |||
# M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, G. Schmid, A review on lithium combustion, Applied Energy 162 (2016) 948–965. https://doi.org/10.1016/j.apenergy.2015.10.172. | |||
# J. Peng, H. Li, L. Chen, F. Wu, Application of Liquid Metal Electrodes in Electrochemical Energy Storage, Precision Chemistry 1 (2023) 452–467. https://doi.org/10.1021/prechem.3c00030. | |||
edits