LNF:Development of critical diagnostics for the operation of the IFMIF-DONES Lithium target (DONES-LIDIA): Difference between revisions

Jump to navigation Jump to search
(Created page with "== LNF - Nationally funded project == '''Title''': ''' Development of critical diagnostics for the operation of the IFMIF-DONES Lithium target (DONES-LIDIA, DONES LIthium DIAgnostics)''' '''Reference''': PID2021-125334OB-I00 '''Programme and date''': Proyectos de Generación de Conocimiento 2021 '''Programme type (Modalidad de proyecto)''': Proyectos investigación orientada '''Area/subarea (Área temática / subárea)''': Energía y Transporte/Energía '''Principa...")
 
Line 33: Line 33:
<!-- If applicable: references -->
<!-- If applicable: references -->
== References ==
== References ==
[1] A.J. Donné, “Roadmap Towards Fusion Electricity”, Journal of Fusion Energy, 38, 503–505 (2019).
# A.J. Donné, “Roadmap Towards Fusion Electricity”, Journal of Fusion Energy, 38, 503–505 (2019).
[2] Ibarra et al., “The IFMIF-DONES project: preliminary engineering design”, Nucl. Fusion, vol. 58 105002, 2018.
# Ibarra et al., “The IFMIF-DONES project: preliminary engineering design”, Nucl. Fusion, vol. 58 105002, 2018.
[3] J. Knaster et al., “Overview of the IFMIF/EVEDA project”, Nuclear Fusion, vol. 57, iss. 10, 2017.
# J. Knaster et al., “Overview of the IFMIF/EVEDA project”, Nuclear Fusion, vol. 57, iss. 10, 2017.
[4] P. Arena, et al., “The design of the DONES lithium target system”, Fusion Engineering and Design, vol. 146, Part A, 2019, pp. 1135-1139, ISSN 0920-3796.
# P. Arena, et al., “The design of the DONES lithium target system”, Fusion Engineering and Design, vol. 146, Part A, 2019, pp. 1135-1139, ISSN 0920-3796.
[5] T. Dézsi, et al., “Overview of the Current Status of IFMIF-DONES Secondary Heat Removal System Design,” Fusion Engineering and Design, vol. 146, Part A, 2019, pp. 430-432, ISSN 0920-3796.
# T. Dézsi, et al., “Overview of the Current Status of IFMIF-DONES Secondary Heat Removal System Design,” Fusion Engineering and Design, vol. 146, Part A, 2019, pp. 430-432, ISSN 0920-3796.
[6] K. Kondo et al., “Validation of the linear IFMIF prototype accelerator (LIPAc) in Rokkasho,” Fusion Eng. Des. 153, 111503 (2020).
# K. Kondo et al., “Validation of the linear IFMIF prototype accelerator (LIPAc) in Rokkasho,” Fusion Eng. Des. 153, 111503 (2020).
[7] H. Kondo, et al., “Completion of IFMIF/EVEDA lithium test loop construction”, Fusion Engineering and Design, vol. 87, iss. 5–6, 2012, pp. 418-422.
# H. Kondo, et al., “Completion of IFMIF/EVEDA lithium test loop construction”, Fusion Engineering and Design, vol. 87, iss. 5–6, 2012, pp. 418-422.
[8] A. Aiello, et al., “Lifus (lithium for fusion) 6 loop design and construction”, Fusion Engineering and Design, vol. 88, iss. 6–8, 2013, pp. 769-773.
# A. Aiello, et al., “Lifus (lithium for fusion) 6 loop design and construction”, Fusion Engineering and Design, vol. 88, iss. 6–8, 2013, pp. 769-773.
[9] E. Wakai, et al., “Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project”, Nuclear Materials and Energy, vol. 9, 2016, pp. 278-285.
# E. Wakai, et al., “Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project”, Nuclear Materials and Energy, vol. 9, 2016, pp. 278-285.
[10]J R Pinzón, et al., “Measurement of the tilt angle of turbulent structures in magnetically confined plasmas using Doppler reflectometry”, Plasma Physics and Controlled Fusion, vol. 61, 10, 2019.
# J R Pinzón, et al., “Measurement of the tilt angle of turbulent structures in magnetically confined plasmas using Doppler reflectometry”, Plasma Physics and Controlled Fusion, vol. 61, 10, 2019.
[11]T. Estrada, et al., “Plasma flow, turbulence and magnetic islands in TJ-II”, Nuclear Fusion, vol. 56, Number 2, 2016.
# T. Estrada, et al., “Plasma flow, turbulence and magnetic islands in TJ-II”, Nuclear Fusion, vol. 56, Number 2, 2016.
[12]M. Fontana, et al., “Real-time applications of Electron Cyclotron Emission interferometry for disruption avoidance during the plasma current ramp-up phase at JET”, Fusion Engineering and Design, vol. 161, 2020, 111934.
# M. Fontana, et al., “Real-time applications of Electron Cyclotron Emission interferometry for disruption avoidance during the plasma current ramp-up phase at JET”, Fusion Engineering and Design, vol. 161, 2020, 111934.
[13]T. Windisch, et al., “Phased array Doppler reflectometry at Wendelstein 7-X”, Review of Scientific Instruments 89, 10H115, 2018.
# T. Windisch, et al., “Phased array Doppler reflectometry at Wendelstein 7-X”, Review of Scientific Instruments 89, 10H115, 2018.
[14]M. A. Van Zeeland, et al., “Tests of a two-color interferometer and polarimeter for ITER density measurements”, Plasma Physics and Controlled Fusion, vol. 59, iss. 12, 2017.
#M. A. Van Zeeland, et al., “Tests of a two-color interferometer and polarimeter for ITER density measurements”, Plasma Physics and Controlled Fusion, vol. 59, iss. 12, 2017.
[15]S. B. Korsholm et al., "High power microwave diagnostic for the fusion energy experiment ITER," 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, pp. 1-2, 2016.
#S. B. Korsholm et al., "High power microwave diagnostic for the fusion energy experiment ITER," 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, pp. 1-2, 2016.
[16]F. Arranz et al., "Remote Handling in the Accelerator Systems of DONES," in IEEE Tran. on Plasma Science, vol. 48, no. 6, pp. 1743-1747, June 2020, doi: 10.1109/TPS.2020.2969262.
# F. Arranz et al., "Remote Handling in the Accelerator Systems of DONES," in IEEE Tran. on Plasma Science, vol. 48, no. 6, pp. 1743-1747, June 2020, doi: 10.1109/TPS.2020.2969262.
[17]G. Miccichè, et al., “The remote handling system of IFMIF-DONES”, Fusion Engineering and Design, vol. 146, Part B, 2019, pp. 2786-2790.
# G. Miccichè, et al., “The remote handling system of IFMIF-DONES”, Fusion Engineering and Design, vol. 146, Part B, 2019, pp. 2786-2790.
[18]Q. Xu, et al., “Electrical resistivity measurement of Fe-0.6%Cu alloy irradiated by neutrons at 14- 19 K”, Journal of Nuclear Materials, 481, (2016) 176-180.
# Q. Xu, et al., “Electrical resistivity measurement of Fe-0.6%Cu alloy irradiated by neutrons at 14- 19 K”, Journal of Nuclear Materials, 481, (2016) 176-180.
[19]E. Barrera et al., "Implementation of ITER Fast Plant Interlock System Using FPGAs With CompactRIO," in IEEE Trans. on Nuclear Science, vol. 65, no. 2, pp. 796-804, Feb. 2018.
# E. Barrera et al., "Implementation of ITER Fast Plant Interlock System Using FPGAs With CompactRIO," in IEEE Trans. on Nuclear Science, vol. 65, no. 2, pp. 796-804, Feb. 2018.
[20]C. de la Morena, et al., "Fully Digital and White Rabbit-Synchronized Low-Level RF System for LIPAc," IEEE Trans. on Nuclear Science. vol. 65, no. 1, pp. 514 - 522. Jan. 2018.
# C. de la Morena, et al., "Fully Digital and White Rabbit-Synchronized Low-Level RF System for LIPAc," IEEE Trans. on Nuclear Science. vol. 65, no. 1, pp. 514 - 522. Jan. 2018.
 




Navigation menu