H-mode: Difference between revisions

Jump to navigation Jump to search
87 bytes added ,  5 December 2015
Added reference
(revert vandalism)
(Added reference)
Line 1: Line 1:
When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state.  
When a magnetically confined plasma is heated strongly and a threshold heating power level is exceeded, it may spontaneously transition from a low confinement (or L-mode) state to a high confinement (or H-mode) state.  
<ref>[http://link.aps.org/doi/10.1103/PhysRevLett.53.1453 F. Wagner et al, ''Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX'', Phys. Rev. Lett. '''53''' (1984) 1453 - 1456]</ref>
<ref>F. Wagner et al, ''Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX'', [http://link.aps.org/doi/10.1103/PhysRevLett.53.1453 Phys. Rev. Lett. '''53''' (1984) 1453 - 1456]</ref>
In the H-mode, the [[Energy confinement time|energy confinement time]] is significantly enhanced, i.e., typically by a factor of 2 or more.
In the H-mode, the [[Energy confinement time|energy confinement time]] is significantly enhanced, i.e., typically by a factor of 2 or more.
<ref>[http://dx.doi.org/10.1088/0741-3335/29/10A/320 M. Keilhacker, ''H-mode confinement in tokamaks'', Plasma Phys. Control. Fusion '''29''' (1987) 1401-1413]</ref>
<ref>M. Keilhacker, ''H-mode confinement in tokamaks'', [[doi:10.1088/0741-3335/29/10A/320|Plasma Phys. Control. Fusion '''29''' (1987) 1401-1413]]</ref>
<ref>F. Wagner et al., ''H-mode of W7-AS stellarator'', [[doi:10.1088/0741-3335/36/7A/006|Plasma Phys. Control. Fusion '''36''' (1994) A61]]</ref>
<ref>[http://efdasql.ipp.mpg.de/HmodePublic/ The International Global H-mode Confinement Database]</ref>
<ref>[http://efdasql.ipp.mpg.de/HmodePublic/ The International Global H-mode Confinement Database]</ref>
H-mode profiles have a characteristic ''[[Pedestal|edge pedestal]]''.
H-mode profiles have a characteristic ''[[Pedestal|edge pedestal]]''.
Line 11: Line 12:
There is substantial evidence that the suppression of turbulence is the consequence of the formation of a sheared flow layer and an associated edge radial electric field.  
There is substantial evidence that the suppression of turbulence is the consequence of the formation of a sheared flow layer and an associated edge radial electric field.  
The local suppression of turbulence leads to a reduction of transport and a steepening of the edge profiles.
The local suppression of turbulence leads to a reduction of transport and a steepening of the edge profiles.
<ref>[http://dx.doi.org/10.1088/0741-3335/49/12B/S01 F. Wagner, ''A quarter-century of H-mode studies'', Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]</ref>
<ref>F. Wagner, ''A quarter-century of H-mode studies'', [[doi:10.1088/0741-3335/49/12B/S01|Plasma Phys. Control. Fusion '''49''' (2007) B1-B33]]</ref>


A variety of mechanisms can give rise to sheared flow, or favour its growth:
A variety of mechanisms can give rise to sheared flow, or favour its growth:
* The main process for sheared flow generation is generation by the turbulence itself via the [[Reynolds stress]] mechanism. Simply put, transport generated by the fluctuations produces a radial current ''j<sub>r</sub>'' that spins up the plasma via the ''j'' &times; ''B'' [[:Wikipedia:Lorentz force|Lorentz force]]. <ref>[http://dx.doi.org/10.1063/1.859681 P.H. Diamond and Y.-B. Kim, ''Theory of mean poloidal flow generation by turbulence'', Phys. Fluids B '''3''' (1991) 1626]</ref> <ref>[http://dx.doi.org/10.1088/0741-3335/43/10/308 S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', Plasma Phys. Control. Fusion '''43''' (2001) 1377-1395]</ref>
* The main process for sheared flow generation is generation by the turbulence itself via the [[Reynolds stress]] mechanism. Simply put, transport generated by the fluctuations produces a radial current ''j<sub>r</sub>'' that spins up the plasma via the ''j'' &times; ''B'' [[:Wikipedia:Lorentz force|Lorentz force]]. <ref>P.H. Diamond and Y.-B. Kim, ''Theory of mean poloidal flow generation by turbulence'', [[doi:10.1063/1.859681|Phys. Fluids B '''3''' (1991) 1626]]</ref> <ref>S.B. Korsholm et al, ''Reynolds stress and shear flow generation'', [[doi:10.1088/0741-3335/43/10/308|Plasma Phys. Control. Fusion '''43''' (2001) 1377-1395]]</ref>
* This radial current can also actively be produced by electrode biasing. <ref>[http://link.aps.org/doi/10.1103/PhysRevLett.63.2365 R.J. Taylor et al, ''H-mode behavior induced by cross-field currents in a tokamak'', Phys. Rev. Lett. '''63''' (1989) 2365-2368]</ref>
* This radial current can also actively be produced by electrode biasing. <ref>R.J. Taylor et al, ''H-mode behavior induced by cross-field currents in a tokamak'', [http://link.aps.org/doi/10.1103/PhysRevLett.63.2365 Phys. Rev. Lett. '''63''' (1989) 2365-2368]</ref>
* Sheared flow may be favoured by reduced viscous damping, which might explain the dependence on rational surfaces observed in the stellarator W7-AS. <ref>[http://dx.doi.org/10.1088/0741-3335/42/7/306 H. Wobig and J. Kisslinger, ''Viscous damping of rotation in Wendelstein 7-AS'', Plasma Phys. Control. Fusion '''42''' (2000) 823-841]</ref>
* Sheared flow may be favoured by reduced viscous damping, which might explain the dependence on rational surfaces observed in the stellarator W7-AS. <ref>H. Wobig and J. Kisslinger, ''Viscous damping of rotation in Wendelstein 7-AS'', [[doi:10.1088/0741-3335/42/7/306|Plasma Phys. Control. Fusion '''42''' (2000) 823-841]]</ref>
* Sheared flow can also be generated by external momentum input.
* Sheared flow can also be generated by external momentum input.


The details of the feedback mechanism between turbulence and sheared flow are the subject of ongoing studies.
The details of the feedback mechanism between turbulence and sheared flow are the subject of ongoing studies.
<ref>[http://link.aps.org/doi/10.1103/PhysRevLett.72.2565 P.H. Diamond et al, ''Self-Regulating Shear Flow Turbulence: A Paradigm for the L to H Transition'', Phys. Rev. Lett. '''72''' (1994) 2565 - 2568]</ref>
<ref>P.H. Diamond et al, ''Self-Regulating Shear Flow Turbulence: A Paradigm for the L to H Transition'', [http://link.aps.org/doi/10.1103/PhysRevLett.72.2565 Phys. Rev. Lett. '''72''' (1994) 2565 - 2568]</ref>
<ref>[http://link.aip.org/link/?PHPAEN/16/012504/1 M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', Phys. Plasmas '''16''' (2009) 012504]</ref>
<ref>M.A. Malkov and P.H. Diamond, ''Weak hysteresis in a simplified model of the L-H transition'', [http://link.aip.org/link/?PHPAEN/16/012504/1 Phys. Plasmas '''16''' (2009) 012504]</ref>


In summary, the H-mode is the consequence of a self-organizing process in the plasma.
In summary, the H-mode is the consequence of a self-organizing process in the plasma.

Navigation menu