Connection length: Difference between revisions

Jump to navigation Jump to search
m
no edit summary
No edit summary
mNo edit summary
Line 12: Line 12:


In a circular [[tokamak]], the [[Toroidal coordinates|poloidal circumference]] is ''2πr''.
In a circular [[tokamak]], the [[Toroidal coordinates|poloidal circumference]] is ''2πr''.
The connection length is ''L = 2πr/sin(α)'',  
The connection length is <math>L = 2\pi r/\sin(\alpha)</math>,  
where ''&alpha;'' is the pitch angle of the field line, namely
where <math>\alpha</math> is the pitch angle of the field line, namely
''tan(&alpha;) = B<sub>&theta;</sub>/B<sub>&phi;</sub>''.
<math>\tan(\alpha) = B_\theta/B_\phi</math>.
Assuming ''B<sub>&phi;</sub> &gt;&gt; B<sub>&theta;</sub>'',
Assuming <math>B_\phi \gg B_\theta</math>,
one has ''sin(&alpha;) &sim; tan(&alpha;)'', so that
one has <math>\sin(\alpha) \simeq \tan(\alpha)</math>, so that
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>


:<math>L = 2 \pi r \frac{B_\phi}{B_\theta} = 2 \pi R q</math>
:<math>L = 2 \pi r \frac{B_\phi}{B_\theta} = 2 \pi R q</math>


where q is the [[Rotational transform|safety factor]], approximated by
where ''q'' is the [[Rotational transform|safety factor]], approximated by
''q = r B<sub>&phi;</sub> / R B<sub>&theta;</sub>''.
<math>q = r B_\phi / R B_\theta</math>.


== Open field lines ==
== Open field lines ==

Navigation menu