Long-range correlation: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
 
Line 26: Line 26:
These issues can be understood in the framework of [[Self-Organised Criticality]].  
These issues can be understood in the framework of [[Self-Organised Criticality]].  
The mathematical modelling of such systems is based on the [[Continuous Time Random Walk]] and the Generalized Master Equation.
The mathematical modelling of such systems is based on the [[Continuous Time Random Walk]] and the Generalized Master Equation.
<ref>[[doi:10.1103/PhysRevE.71.011111|R. Sánchez, B.A. Carreras, and B.Ph. van Milligen, ''Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations'', Phys. Rev. E '''71''' (2005) 011111]]</ref>
<ref>R. Sánchez, B.A. Carreras, and B.Ph. van Milligen, ''Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations'', [[doi:10.1103/PhysRevE.71.011111|Phys. Rev. E '''71''' (2005) 011111]]</ref>


=== Experimental determination ===
=== Experimental determination ===
It can be shown that determining the long-range behaviour of the correlation function directly from &gamma;<sub>XY</sub> is not a good idea, due to its sensitivity to noise.<ref>[[doi:10.1063/1.873192|B.A. Carreras, D.E. Newman, B.Ph. van Milligen, and C. Hidalgo, ''Long-range time dependence in the cross-correlation function'', Phys. Plasmas '''6''' (1999) 485]]</ref>
It can be shown that determining the long-range behaviour of the correlation function directly from &gamma;<sub>XY</sub> is not a good idea, due to its sensitivity to noise.<ref>B.A. Carreras, D.E. Newman, B.Ph. van Milligen, and C. Hidalgo, ''Long-range time dependence in the cross-correlation function'', [[doi:10.1063/1.873192|Phys. Plasmas '''6''' (1999) 485]]</ref>
Rather, techniques to determine the [[:Wikipedia:Hurst exponent|Hurst exponent]], such as the [[:Wikipedia:Rescaled range|Rescaled Range]]<ref>[[doi:10.1103/PhysRevLett.80.4438|B.A. Carreras, B. van Milligen, M.A. Pedrosa, et al., ''Long-Range Time Correlations in Plasma Edge Turbulence'', Phys. Rev. Lett. '''80''' (1998) 4438]]</ref><ref>[[doi:10.1063/1.873490|B.A. Carreras, B.Ph. van Milligen, M.A. Pedrosa, et al., ''Experimental evidence of long-range correlations and self-similarity in plasma fluctuations'', Phys. Plasmas 6 (1999) 1885]]</ref> or Structure Functions<ref>[[doi:10.1063/1.1459707|M. Gilmore, C.X. Yu, T.L. Rhodes, and W.A. Peebles, ''Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence'', Phys. Plasmas '''9''' (2002) 1312]]</ref> should be used to determine long-range correlations in data series.
Rather, techniques to determine the [[:Wikipedia:Hurst exponent|Hurst exponent]], such as the [[:Wikipedia:Rescaled range|Rescaled Range]]<ref>B.A. Carreras, B. van Milligen, M.A. Pedrosa, et al., ''Long-Range Time Correlations in Plasma Edge Turbulence'', [[doi:10.1103/PhysRevLett.80.4438|Phys. Rev. Lett. '''80''' (1998) 4438]]</ref><ref>B.A. Carreras, B.Ph. van Milligen, M.A. Pedrosa, et al., ''Experimental evidence of long-range correlations and self-similarity in plasma fluctuations'', [[doi:10.1063/1.873490|Phys. Plasmas 6 (1999) 1885]]</ref> or Structure Functions<ref>M. Gilmore, C.X. Yu, T.L. Rhodes, and W.A. Peebles, ''Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence'', [[doi:10.1063/1.1459707|Phys. Plasmas '''9''' (2002) 1312]]</ref> should be used to determine long-range correlations in data series.


In practice, long-range correlations may have various origins, and proper techniques are required to distinguish between those.
In practice, long-range correlations may have various origins, and proper techniques are required to distinguish between those.

Navigation menu