Internal inductance: Difference between revisions

Jump to navigation Jump to search
Line 15: Line 15:
In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In a [[tokamak]], the field produced by the plasma current is the ''poloidal'' magnetic field ''B<sub>&theta;<sub>'', so only this field component enters the definition.
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
In this context, it is common to use the ''normalized'' internal inductance<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
:<math>l_i = \frac{2 \pi \int_P{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)} = \frac{\left \langle B_\theta^2 \right \rangle}{B_\theta^2(a)}</math>
:<math>l_i = \frac{2 \pi \int_P{B_\theta^2(\rho) \rho d\rho}}{\pi a^2 B_\theta^2(a)} = \frac{\left \langle B_\theta^2 \right \rangle_P}{B_\theta^2(a)}</math>
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a''), where angular brackets signify taking a mean value.
(for circular cross section plasmas with [[Toroidal coordinates|minor radius]] ''a''), where angular brackets signify taking a mean value.


Navigation menu