Long-range correlation: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 3: Line 3:
Here, <math>\langle . \rangle</math> refers to an average over ''t'' and the observables ''X'' and ''Y'' depend on the time ''t'', but an analogous expression can be written down for spatial dependence.
Here, <math>\langle . \rangle</math> refers to an average over ''t'' and the observables ''X'' and ''Y'' depend on the time ''t'', but an analogous expression can be written down for spatial dependence.


Ignoring coherent states (regular oscillations or 'modes', to which the concept does not apply), the correlation function typically decays exponentially as a function of &Delta; and can be characterized by a 'decorrelation time' (or length), calculated as the distance at which the correlation has dropped from its maximum value by a factor ''1/e''.  
Coherent system states (regular oscillations or 'modes') lead to oscillatory behaviour of the correlation function, as is easily checked by setting ''X = sin(&omega;t)'' and taking, e.g., ''Y=X''.
Note also that the correlation function is a convolution, hence its spectrum is the product of the spectra of ''X'' and ''Y'', so that &gamma;<sub>XY</sub> 'inherits' the spectral properties of the original time series.
 
More interesting is the typical behaviour of the correlation function for turbulent states.
In this case, the correlation function typically decays exponentially as a function of &Delta; and can be characterized by a single number: the 'decorrelation time' (or length) &Delta;<sub>corr</sub>, calculated as the distance at which the correlation has dropped from its maximum value by a factor ''1/e''.  


When the correlation exhibits a slower decay for large values of the delay (or distance) &Delta;, namely an algebraic decay proportional to 1/&Delta;<sup>&alpha;</sup> (&alpha; > 0 but not too large, < 2), the correlations at large delay may be quite important to understand the global system behaviour (contrasting sharply with the exponential decay case, in which large values of &Delta; can be safely ignored).
When the correlation exhibits a slower decay for large values of the delay (or distance) &Delta;, namely an algebraic decay proportional to 1/&Delta;<sup>&alpha;</sup> (&alpha; > 0 but not too large, < 2), the correlations at large delay may be quite important to understand the global system behaviour (contrasting sharply with the exponential decay case, in which large values of &Delta; can be safely ignored).