Biorthogonal decomposition: Difference between revisions

Jump to navigation Jump to search
Line 14: Line 14:
:<math>Y(i,j) = \sum_k \lambda_k \psi_k(i) \phi_k(j),\,</math>
:<math>Y(i,j) = \sum_k \lambda_k \psi_k(i) \phi_k(j),\,</math>


where &psi;<sub>k</sub> is a 'chrono' (a temporal function) and &phi;<sub>k</sub> a 'topo' (a spatial or detector-dependent function), such that the chronos and topos satisfy the following orthogonality relation
where &psi;<sub>k</sub> is a 'chrono' (a temporal function) and &phi;<sub>k</sub> a 'topo' (a spatial or detector-dependent function)<ref>[[doi:10.1007/BF01048312|N. Aubry, R. Guyonnet and R. Lima, ''Spatiotemporal analysis of complex signals: Theory and applications'', J. Statistical Physics
'''64''', 3-4 (1991) 683]]</ref>, such that the chronos and topos satisfy the following orthogonality relation


:<math>\sum_i{\psi_k(i)\psi_l(i)} = \sum_j{\phi_k(j)\phi_l(j)} = \delta_{kl}.\,</math>
:<math>\sum_i{\psi_k(i)\psi_l(i)} = \sum_j{\phi_k(j)\phi_l(j)} = \delta_{kl}.\,</math>

Navigation menu