Flux coordinates: Difference between revisions

Jump to navigation Jump to search
Line 165: Line 165:
</math>
</math>
The FSA relates to the conventional volume integral as
The FSA relates to the conventional volume integral as
*<math> \int_{\mathcal{V}(V_1<V<V_2)} s\; d\mathcal{V} = \int_{V_1}^{V_2} \langle s \rangle\; dV  
*<math> \int_{\mathcal{V}(V_1<V<V_2)} f\; d\mathcal{V} = \int_{V_1}^{V_2} \langle f \rangle\; dV  
</math>
</math>
whereas the conventional surface integral over a <math>\psi = constant</math> is
whereas the conventional surface integral over a <math>\psi = constant</math> is
*<math> \int_{\psi = \psi_0} s\; d\mathcal{S} =  \langle s |\nabla V| \rangle  
*<math> \int_{S(\psi)} f\; dS =  \langle f |\nabla V| \rangle  
</math>
</math>


204

edits

Navigation menu