VMEC: Difference between revisions

Jump to navigation Jump to search
No change in size ,  3 November 2010
no edit summary
No edit summary
No edit summary
Line 1: Line 1:
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional


:<math>W = \int_{\omega_p}{ \left ( \frac{1}{2 \mu_0} B^2 + p \right ) dV}</math>
:<math>W = \int_{\Omega_p}{ \left ( \frac{1}{2 \mu_0} B^2 + p \right ) dV}</math>


over the toroidal domain &omega;<sub>p</sub>. The solution is obtained in  
over the toroidal domain &Omega;<sub>p</sub>. The solution is obtained in  
[[Flux coordinates|flux coordinates]]  
[[Flux coordinates|flux coordinates]]  
(''s'', ''&theta;'', ''&zeta;''), related to the [[Toroidal coordinates|cylindrical coordinates]]  
(''s'', ''&theta;'', ''&zeta;''), related to the [[Toroidal coordinates|cylindrical coordinates]]  
Anonymous user

Navigation menu