4,427
edits
No edit summary |
(→Notes) |
||
Line 68: | Line 68: | ||
== Notes == | == Notes == | ||
* The bicoherence can of course be defined in wavenumber space instead of frequency space by applying the replacements ''t → x'' and ''ω → k''. | * The bicoherence can of course be defined in wavenumber space instead of frequency space by applying the replacements ''t → x'' and ''ω → k''. Combined temporal-spatial studies are also possible. <ref>[http://link.aip.org/link/PHPAEN/v17/i5/p052313/s1 T. Yamada, S.-I. Itoh, S. Inagaki, Y. Nagashima, S. Shinohara, N. Kasuya, K. Terasaka, K. Kamataki, H. Arakawa, M. Yagi, A. Fujisawa, and K. Itoh, ''Two-dimensional bispectral analysis of drift wave turbulence in a cylindrical plasma'' , Phys. Plasmas '''17''' (2010) 052313]</ref> | ||
* The bicoherence can be computed using the (continuous) wavelet transform instead of the Fourier transform, in order to improve statistics. <ref>[http://link.aip.org/link/?PHPAEN/2/3017/1 B.Ph. van Milligen et al, ''Wavelet bicoherence: a new turbulence analysis tool'', Phys. Plasmas '''2''', 8 (1995) 3017]</ref> | * The bicoherence can be computed using the (continuous) wavelet transform instead of the Fourier transform, in order to improve statistics. <ref>[http://link.aip.org/link/?PHPAEN/2/3017/1 B.Ph. van Milligen et al, ''Wavelet bicoherence: a new turbulence analysis tool'', Phys. Plasmas '''2''', 8 (1995) 3017]</ref> | ||
== References == | == References == | ||
<references /> | <references /> |