4,427
edits
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The magnetic curvature is defined by | == Field line curvature == | ||
The magnetic field line curvature is defined by | |||
:<math>\vec \kappa = \vec b \cdot \vec \nabla \vec b</math> | :<math>\vec \kappa = \vec b \cdot \vec \nabla \vec b</math> | ||
Line 18: | Line 20: | ||
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref> | <ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref> | ||
== Normal curvature == | === Normal curvature === | ||
The component of the curvature perpendicular to the [[Flux surface|flux surface]] is | |||
:<math>\kappa_N = \vec \kappa \cdot \frac{\vec \nabla \psi}{|\vec \nabla \psi|}</math> | :<math>\kappa_N = \vec \kappa \cdot \frac{\vec \nabla \psi}{|\vec \nabla \psi|}</math> | ||
Line 24: | Line 28: | ||
Here, ψ is a [[Flux surface|flux surface]] label (such as the poloidal flux). | Here, ψ is a [[Flux surface|flux surface]] label (such as the poloidal flux). | ||
== Geodesic curvature == | === Geodesic curvature === | ||
The component of the field line curvature parallel to the [[Flux surface|flux surface]] is | |||
:<math>\kappa_G = \vec \kappa \cdot \left (\frac{\vec \nabla \psi}{|\vec \nabla \psi|} \times \frac{\vec B}{|\vec B|}\right )</math> | :<math>\kappa_G = \vec \kappa \cdot \left (\frac{\vec \nabla \psi}{|\vec \nabla \psi|} \times \frac{\vec B}{|\vec B|}\right )</math> | ||
== Flux surface curvature == | |||
The tangent plane to any flux surface is spanned up by two tangent vectors: one is the normalized magnetic field vector (discussed above), and the other is | |||
:<math>\vec b_\perp = \frac{\vec \nabla \psi \times \vec B }{|\vec \nabla \psi \times \vec B|}</math> | |||
The corresponding perpendicular curvature is | |||
:<math>\vec \kappa_\perp = \vec b_\perp \cdot \vec \nabla \vec b_\perp</math> | |||
and one can again define the corresponding normal and geodesic curvature components in analogy with the above. | |||
== References == | == References == | ||
<references /> | <references /> |