Magnetic curvature: Difference between revisions

Jump to navigation Jump to search
no edit summary
mNo edit summary
No edit summary
Line 1: Line 1:
The magnetic curvature is defined by
== Field line curvature ==
 
The magnetic field line curvature is defined by


:<math>\vec \kappa = \vec b \cdot \vec \nabla \vec b</math>
:<math>\vec \kappa = \vec b \cdot \vec \nabla \vec b</math>
Line 18: Line 20:
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref>
<ref>[http://link.aps.org/doi/10.1103/RevModPhys.76.1071 A.H. Boozer, ''Physics of magnetically confined plasmas'', Rev. Mod. Phys. '''76''' (2004) 1071]</ref>


== Normal curvature ==
=== Normal curvature ===
 
The component of the curvature perpendicular to the [[Flux surface|flux surface]] is


:<math>\kappa_N = \vec \kappa \cdot \frac{\vec \nabla \psi}{|\vec \nabla \psi|}</math>
:<math>\kappa_N = \vec \kappa \cdot \frac{\vec \nabla \psi}{|\vec \nabla \psi|}</math>
Line 24: Line 28:
Here, &psi; is a [[Flux surface|flux surface]] label (such as the poloidal flux).
Here, &psi; is a [[Flux surface|flux surface]] label (such as the poloidal flux).


== Geodesic curvature ==
=== Geodesic curvature ===


The component of the field line curvature parallel to the [[Flux surface|flux surface]] is
:<math>\kappa_G = \vec \kappa \cdot \left (\frac{\vec \nabla \psi}{|\vec \nabla \psi|} \times \frac{\vec B}{|\vec B|}\right )</math>
:<math>\kappa_G = \vec \kappa \cdot \left (\frac{\vec \nabla \psi}{|\vec \nabla \psi|} \times \frac{\vec B}{|\vec B|}\right )</math>
== Flux surface curvature ==
The tangent plane to any flux surface is spanned up by two tangent vectors: one is the normalized magnetic field vector (discussed above), and the other is
:<math>\vec b_\perp = \frac{\vec \nabla \psi \times \vec B }{|\vec \nabla \psi \times \vec B|}</math>
The corresponding perpendicular curvature is
:<math>\vec \kappa_\perp = \vec b_\perp \cdot \vec \nabla \vec b_\perp</math>
and one can again define the corresponding normal and geodesic curvature components in analogy with the above.


== References ==
== References ==
<references />
<references />

Navigation menu