Flux coordinates: Difference between revisions

Jump to navigation Jump to search
Line 53: Line 53:
</math>
</math>
It can be seen that <ref name='Dhaeseleer'></ref> <math>g \equiv \det(g_{ij}) = J^2 \Rightarrow J = \sqrt{g}</math>
It can be seen that <ref name='Dhaeseleer'></ref> <math>g \equiv \det(g_{ij}) = J^2 \Rightarrow J = \sqrt{g}</math>
=== Gradient, Divergence and Curl in curvilinear coordinates ===
The gradient of a funcion f is naturally given in the contravariant base vectors:
:<math>
\nabla f = \frac{\partial f}{\partial u^i}\nabla u^i = \frac{\partial f}{\partial u^i}\mathbf{e}^i~.
</math>
The divergence of a vector \mathbf{A} is best expressed in terms of its contravariant components
:<math>
\nabla\cdot\mathbf{A} = \frac{1}{\sqrt{g}}\frac{\partial}{\partial u^i}(\sqrt{g}A^i)~,
</math>
while the curl is
:<math>
\nabla\times\mathbf{A} = \frac{\epsilon^{ijk}}{\sqrt{g}}\frac{\partial}{\partial u^i}(\sqrt{g}A_j)\mathbf{e}_k
</math>
given in temr of the covariant base vectors, where <math>\epsilon^{ijk}</math> is the [[::Wikipedia:Levi-Civita symbol| Levi-Civita]] symbol.


== Flux coordinates ==
== Flux coordinates ==
204

edits

Navigation menu