Flux coordinates: Difference between revisions

Jump to navigation Jump to search
Line 228: Line 228:
Particular choices of G can be that simplify the description of other fields. The most commonly used magnetic coordinate systems are:
Particular choices of G can be that simplify the description of other fields. The most commonly used magnetic coordinate systems are:
<ref name='Dhaeseleer'>W.D. D'haeseleer, ''Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory'', Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193</ref>
<ref name='Dhaeseleer'>W.D. D'haeseleer, ''Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory'', Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193</ref>
* Hamada coordinates. <ref>S. Hamada, Nucl. Fusion '''2''' (1962) 23</ref><ref>[http://dx.doi.org/10.1063/1.1706651 J.M. Greene and J.L Johnson, ''Stability Criterion for Arbitrary Hydromagnetic Equilibria'', Phys. Fluids '''5''' (1962) 510]</ref> In these coordinates, both the field lines and current lines corresponding to the [[MHD equilibrium]] are straight. Referring to the definitions above, both <math>\tilde\nu</math> and <math>\tilde\eta</math> are zero in Hamada coordinates.
* [[Hamada coordinates]]. <ref>S. Hamada, Nucl. Fusion '''2''' (1962) 23</ref><ref>[http://dx.doi.org/10.1063/1.1706651 J.M. Greene and J.L Johnson, ''Stability Criterion for Arbitrary Hydromagnetic Equilibria'', Phys. Fluids '''5''' (1962) 510]</ref> In these coordinates, both the field lines and current lines corresponding to the [[MHD equilibrium]] are straight. Referring to the definitions above, both <math>\tilde\nu</math> and <math>\tilde\eta</math> are zero in Hamada coordinates.
* Boozer coordinates. <ref>[http://dx.doi.org/10.1063/1.863297 A.H. Boozer, ''Plasma equilibrium with rational magnetic surfaces'', Phys. Fluids '''24''' (1981) 1999]</ref><ref>[http://dx.doi.org/10.1063/1.863765 A.H. Boozer, ''Establishment of magnetic coordinates for a given magnetic field'', Phys. Fluids '''25''' (1982) 520]</ref> In these coordinates, the field lines corresponding to the [[MHD equilibrium]] are straight and so are the ''diamagnetic lines '', i.e. the integral lines of <math>\nabla\psi\times\mathbf{B}</math>. Referring to the definitions above, both <math>\tilde\nu</math> and <math>\tilde\chi</math> are zero in Boozer coordinates.
* Boozer coordinates. <ref>[http://dx.doi.org/10.1063/1.863297 A.H. Boozer, ''Plasma equilibrium with rational magnetic surfaces'', Phys. Fluids '''24''' (1981) 1999]</ref><ref>[http://dx.doi.org/10.1063/1.863765 A.H. Boozer, ''Establishment of magnetic coordinates for a given magnetic field'', Phys. Fluids '''25''' (1982) 520]</ref> In these coordinates, the field lines corresponding to the [[MHD equilibrium]] are straight and so are the ''diamagnetic lines '', i.e. the integral lines of <math>\nabla\psi\times\mathbf{B}</math>. Referring to the definitions above, both <math>\tilde\nu</math> and <math>\tilde\chi</math> are zero in Boozer coordinates.


== References ==
== References ==
<references />
<references />
204

edits

Navigation menu