Toroidal coordinates: Difference between revisions

Jump to navigation Jump to search
Line 104: Line 104:
J^{-1} = \det\left(\frac{\partial(\psi,\theta,\phi)}{\partial(x,y,z)}\right) = \nabla{\psi}\cdot\nabla{\theta} \times \nabla{\phi}
J^{-1} = \det\left(\frac{\partial(\psi,\theta,\phi)}{\partial(x,y,z)}\right) = \nabla{\psi}\cdot\nabla{\theta} \times \nabla{\phi}
</math>
</math>
It can be seen that<ref>W.D. D'haeseleer, ''Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory'', Springer series in computational physics, Springer-Verlag (1991) ISBN 3540524193</ref> <math>g \equiv \det(g_{ij}) = J^2 \Rightarrow J = \sqrt{g}</math>
It can be seen that <ref></ref> <math>g \equiv \det(g_{ij}) = J^2 \Rightarrow J = \sqrt{g}</math>


== Flux Coordinates ==
== Flux Coordinates ==
204

edits

Navigation menu