4,427
edits
m (→Limitations) |
|||
Line 8: | Line 8: | ||
The theory starts from the (Markovian) Fokker-Planck Equation for the particle distribution function <math>f_\alpha(x,v,t)</math>: | The theory starts from the (Markovian) Fokker-Planck Equation for the particle distribution function <math>f_\alpha(x,v,t)</math>: | ||
<math> | :<math> | ||
\frac{\partial f_\alpha}{\partial t} + v\cdot \nabla f_\alpha + F \frac{\partial f_\alpha}{\partial v} = C_\alpha(f) | \frac{\partial f_\alpha}{\partial t} + v\cdot \nabla f_\alpha + F \frac{\partial f_\alpha}{\partial v} = C_\alpha(f) | ||
</math> | </math> | ||
Line 21: | Line 21: | ||
Once the collision operator is decided, the moments of the Fokker-Planck equation can be computed: | Once the collision operator is decided, the moments of the Fokker-Planck equation can be computed: | ||
<math> | :<math> | ||
n u = \int{v f d^3v} | n u = \int{v f d^3v} | ||
</math> | </math> | ||
Line 27: | Line 27: | ||
(particle flux) | (particle flux) | ||
<math> | :<math> | ||
P = \int{m v \cdot v f d^3v} | P = \int{m v \cdot v f d^3v} | ||
</math> | </math> | ||
Line 33: | Line 33: | ||
(stress tensor) | (stress tensor) | ||
<math> | :<math> | ||
Q = \int{\frac{m v^2}{2} v f d^3v} | Q = \int{\frac{m v^2}{2} v f d^3v} | ||
</math> | </math> |