|
|
Line 23: |
Line 23: |
|
| |
|
| == Liquid Metal Technology == | | == Liquid Metal Technology == |
| Inside a fusion reactor, some materials will not be subjected only to radiation, but also to enormous heat loads in the case of plasma disruptions. In view of this, both: i) stationary conditions due to the intrinsic reactor properties: high density, low temperature and high power and ii) violent transient events (called ELMs in plasma physics literature) must be reproduced. Therefore, it is essential to dispose of a device (which it will be called “plasma gun”) to study plasma-material interactions simultaneously in steady state and transient regimes, thereby allowing an analysis of the modification of the materials and their properties in fusion reactors.
| | A number of, ITER, DEMO , and IFMIF components will use liquid metals as refrigerants, tritium generators, neutron reproducers, moderators, etc., all of them under extreme conditions. Therefore, these applications need further research to be finally implemented in such installations. |
| The mentioned plasma gun would consist of two main elements: i) a linear plasma device capable of generating hydrogen plasmas with steady state particle fluxes of up to 1024 m-2s-1 (i.e., of the order of the expected ITER fluxes) and impact energies in the range of 1-10 eV, and ii) a device of the quasi-stationary plasma accelerators (QSPA) type, providing pulses lasting 0.1-1.0 ms and energy fluxes in the 0.1-20 MJm-2 range, in a longitudinal magnetic field of the order of 1 T or greater. | | The basic working scheme for this area in TechnoFusión facility is an arrangement of two liquid lithium loops, one of them coupled to the Rhodotron® electron accelerator to investigate the effects of gamma radiation on different conditions of the liquid lithium. |
| These devices are connected by a common vacuum chamber, allowing the exchange of samples, and their simultaneous or consecutive exposure to the steady state and transient plasma flows under controlled conditions. Both devices will operate with hydrogen, deuterium, helium, and argon.
| | The main goals of this area are the studies of i) the free surface of liquid metals under conditions of internal energy deposition, and ii) the compatibility of structural materials and liquid metals in the presence of radiation. In addition, it will be possible to study the influence of magnetic fields on the cited phenomena as well as the development of methods for i) purification of liquid metals, ii) enrichment of lithium, iii) extraction of tritium, and iv) development of safety protocols for liquid metal handling. |
|
| |
|
| == Characterization Techniques == | | == Characterization Techniques == |