Neoclassical transport: Difference between revisions

Jump to navigation Jump to search
m
Line 19: Line 19:
* A fixed geometry. Neoclassical transport is calculated in a static magnetic geometry. In actual experiments (especially Tokamaks), the magnetic field evolves along with the plasma itself, leading to a modification of net transport. While a slow evolution (with respect to typical transport time scales) should not e problematic, rapid changes (such as magnetic reconnections) are outside of the scope of the theory.
* A fixed geometry. Neoclassical transport is calculated in a static magnetic geometry. In actual experiments (especially Tokamaks), the magnetic field evolves along with the plasma itself, leading to a modification of net transport. While a slow evolution (with respect to typical transport time scales) should not e problematic, rapid changes (such as magnetic reconnections) are outside of the scope of the theory.
* The remoteness of system boundaries. Particle orbits in complex geometries can be rather wide, in some circumstances, so that the presence of system boundaries is "felt" by the plasma. Presumably, and since Neoclassical Theory assumes that the system is essentially infinite, this explains why Neoclassical Theory tends to fail near the edge of the plasma. Internal Transport Barriers may also produce non-Neoclasical effects.
* The remoteness of system boundaries. Particle orbits in complex geometries can be rather wide, in some circumstances, so that the presence of system boundaries is "felt" by the plasma. Presumably, and since Neoclassical Theory assumes that the system is essentially infinite, this explains why Neoclassical Theory tends to fail near the edge of the plasma. Internal Transport Barriers may also produce non-Neoclasical effects.
* The linearity of the system. Neoclassical theory is a linear theory in which profiles are computed from sources and transport coefficients (that depend linearly on the profiles). No non-linear feedback of the profiles on the transport coefficients is contemplated. However, there are many exprimental studies that show that the profiles feed back non-linearly on the profiles (via [[Turbulence]]), leading to some degree of [[Self-Organised Criticality]].
* The linearity of the system. Neoclassical theory is a linear theory in which profiles are computed from sources and transport coefficients (that depend linearly on the profiles). No non-linear feedback of the profiles on the transport coefficients is contemplated. However, there are many exprimental studies that show that the profiles feed back non-linearly on the profiles (via [[Turbulence|turbulence]]), leading to some degree of [[Self-Organised Criticality|self-organisation]].


== References ==
== References ==
<references />
<references />

Navigation menu