4,427
edits
No edit summary |
|||
Line 65: | Line 65: | ||
By contrast, the L-mode scaling is of the Bohm type, which suggests that transport may [[Non-diffusive transport|not be diffusive]] and not characterized by a typical scale length, i.e., it is dominated by the scale length corresponding to the machine size (non-locality). | By contrast, the L-mode scaling is of the Bohm type, which suggests that transport may [[Non-diffusive transport|not be diffusive]] and not characterized by a typical scale length, i.e., it is dominated by the scale length corresponding to the machine size (non-locality). | ||
<ref>A. Dinklage, ''Plasma physics: confinement, transport and collective effects'', Vol. 670 of Lecture notes in physics, Springer (2005) ISBN 3540252746</ref> | <ref>A. Dinklage, ''Plasma physics: confinement, transport and collective effects'', Vol. 670 of Lecture notes in physics, Springer (2005) ISBN 3540252746</ref> | ||
One possible explanation of this behaviour is [[Self-Organised Criticality]], i.e., the self-regulation of transport by turbulence, triggered when a critical value of the gradient is exceeded. As a corollary, this mechanism might also explain the phenomenon of profile consistency. | One possible explanation of this behaviour is [[Self-Organised Criticality]], i.e., the self-regulation of transport by turbulence, triggered when a critical value of the gradient is exceeded. As a corollary, this mechanism might also explain the phenomenon of [[Profile consistency|profile consistency]]. | ||
== References == | == References == | ||
<references /> | <references /> |