VMEC: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
 
(13 intermediate revisions by 2 users not shown)
Line 13: Line 13:


The code assumes nested flux surfaces.
The code assumes nested flux surfaces.
<ref>[http://dx.doi.org/10.1063/1.864116 S.P. Hirschman et al, ''Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria'', Phys. Fluids '''26''' (1983) 3553]</ref>
<ref>S.P. Hirschman et al, ''Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria'', [[doi:10.1063/1.864116|Phys. Fluids '''26''' (1983) 3553]]</ref>
<ref>[http://dx.doi.org/10.1016/0010-4655(86)90058-5 S.P. Hirschman et al, ''Three-dimensional free boundary calculations using a spectral Green's function method'', Computer Physics Communications '''43''', 1 (1986) 143-155]</ref>
<ref>S.P. Hirschman et al, ''Three-dimensional free boundary calculations using a spectral Green's function method'', [[doi:10.1016/0010-4655(86)90058-5|Computer Physics Communications '''43''', 1 (1986) 143-155]]</ref>


== Implementations of the code ==
== Uses of the code ==
 
Due to its speed in computing the MHD equilibrium problem in 3-D it has become the "de facto" standard code for calculating 3-D equilibria. This means that practically all the laboratories
with stellerator devices routinely use it. It has also been used to model tokamak equilibria and lately (2010) it has been applied to reverse field pinches, in particular helical equilibria (non-axisymmetric) in the RFX-Mod.
<ref>D. Terranova et al., ''Self-Organized Helical Equilibria in the RFX-Mod Reversed Field Pinch'', [[doi:10.1002/ctpp.200900010|Contributions to Plasma Physics '''50''' (2010) 775–779]]</ref>
 
The code is being used at fusion laboratories all over the world:


The code is being used at:
* ORNL, Oak Ridge, TN, USA ([http://www.ornl.gov/sci/fed/Theory/stci/code_library.html code origin])
* ORNL, Oak Ridge, TN, USA ([http://www.ornl.gov/sci/fed/Theory/stci/code_library.html code origin])
* PPPL, Princeton, NJ, USA
* PPPL, Princeton, NJ, USA
* IPP, Garching, Germany
* IPP, at Garching and Greifswald, Germany
* CRPP, Lausanne, Switzerland
* CRPP, Lausanne, Switzerland
* NIFS, Japan
* NIFS, Toki, Japan
* [[Laboratorio Nacional de Fusión|LNF]], Spain
* RFX, Padova. Italy
* [http://www.hsx.wisc.edu/ HSX], Madison, WI, USA
* [[Laboratorio Nacional de Fusión|LNF]], Madrid, Spain


== Enhancements / extensions of the code ==
== Enhancements / extensions of the code ==


* DIAGNO, <ref>H.J. Gardner, Nucl. Fusion '''30''' (1990) 1417</ref> to calculate the response of magnetic diagnostics
* DIAGNO, <ref>H.J. Gardner, ''Modelling the behaviour of the magnetic field diagnostic coils on the W VII-AS stellarator using a three-dimensional equilibrium code'', [[doi:10.1088/0029-5515/30/8/002|Nucl. Fusion '''30''' (1990) 1417]]</ref> to calculate the response of magnetic diagnostics
* MFBE <ref>[http://dx.doi.org/10.1088/0029-5515/37/1/I03 E. Strumberger, ''Finite-&beta; magnetic field line tracing for Helias configurations'', Nucl. Fusion '''37''' (1997) 19]</ref>
* MFBE <ref>E. Strumberger, ''Finite-&beta; magnetic field line tracing for Helias configurations'', [[doi:10.1088/0029-5515/37/1/I03|Nucl. Fusion '''37''' (1997) 19]]</ref>
* STELLOPT <ref>[http://dx.doi.org/10.1088/0029-5515/41/6/305 D.A. Spong et al., ''Physics issues of compact drift optimized stellarators'', Nucl. Fusion '''41''' (2001) 711]</ref>
* STELLOPT <ref>D.A. Spong et al., ''Physics issues of compact drift optimized stellarators'', [[doi:10.1088/0029-5515/41/6/305|Nucl. Fusion '''41''' (2001) 711]]</ref>
 
== See also ==
 
* [https://princetonuniversity.github.io/STELLOPT/ VMECwiki]


== References ==
== References ==
<references />
<references />
[[Category:Software]]

Latest revision as of 15:47, 7 August 2019

The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional

over the toroidal domain Ωp. The solution is obtained in flux coordinates (s, θ, ζ), related to the cylindrical coordinates (R, φ, Z) by

The code assumes nested flux surfaces. [1] [2]

Uses of the code

Due to its speed in computing the MHD equilibrium problem in 3-D it has become the "de facto" standard code for calculating 3-D equilibria. This means that practically all the laboratories with stellerator devices routinely use it. It has also been used to model tokamak equilibria and lately (2010) it has been applied to reverse field pinches, in particular helical equilibria (non-axisymmetric) in the RFX-Mod. [3]

The code is being used at fusion laboratories all over the world:

  • ORNL, Oak Ridge, TN, USA (code origin)
  • PPPL, Princeton, NJ, USA
  • IPP, at Garching and Greifswald, Germany
  • CRPP, Lausanne, Switzerland
  • NIFS, Toki, Japan
  • RFX, Padova. Italy
  • HSX, Madison, WI, USA
  • LNF, Madrid, Spain

Enhancements / extensions of the code

  • DIAGNO, [4] to calculate the response of magnetic diagnostics
  • MFBE [5]
  • STELLOPT [6]

See also

References

  1. S.P. Hirschman et al, Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria, Phys. Fluids 26 (1983) 3553
  2. S.P. Hirschman et al, Three-dimensional free boundary calculations using a spectral Green's function method, Computer Physics Communications 43, 1 (1986) 143-155
  3. D. Terranova et al., Self-Organized Helical Equilibria in the RFX-Mod Reversed Field Pinch, Contributions to Plasma Physics 50 (2010) 775–779
  4. H.J. Gardner, Modelling the behaviour of the magnetic field diagnostic coils on the W VII-AS stellarator using a three-dimensional equilibrium code, Nucl. Fusion 30 (1990) 1417
  5. E. Strumberger, Finite-β magnetic field line tracing for Helias configurations, Nucl. Fusion 37 (1997) 19
  6. D.A. Spong et al., Physics issues of compact drift optimized stellarators, Nucl. Fusion 41 (2001) 711