TJ-II:Excitation of zonal flow oscillations by energetic particles
Experimental campaign
2017 Spring
Proposal title
Excitation of zonal flow oscillations by energetic particles
Name and affiliation of proponent
Edilberto Sánchez, José Luis Velasco, Iván Calvo
Details of contact person at LNF (if applicable)
Edilberto Sánchez
Description of the activity, including motivation/objectives and experience of the proponent (typically one-two pages)
Motivation
In stellarators the zonal flows (ZF) undergo several oscillations depending on the magnetic geometry and the plasma conditions. First, a Geodesic Acoustic Mode (GAM) oscillation, similar to that in tokamaks, appears, whose collisionless damping strongly depends on the rotational transform. A new oscillation, at a lower frequency, recently discovered theoretically [1], appears in stelallarators that is not present in quasisymmetric devices. In TJ-II, both oscillations have been found in simulations [2] and the low frequency one has been identified for the first time during pellet injection experiments [3]. Other experimental evidences appear to be related to zonal flow oscillations, both low frequency [4] and GAM [5].
According to gyrokinetic simulations, the GAM and LFO oscillations are damped in the TJ-II geometry (even collisionlessly) and the necessary driving mechanism has not been identified so far. The turbulence can drive (non-linearly) these oscillations, but it is not the only option as driving mechanism. In tokamaks it has been found that energetic particles can drive the GAM oscillation (EGAMs) [6], but in stellarators there are less evidences [7] and the oscillation fauna is wider than in tokamaks.
Objectives
In this experiment we plan to study the excitation of ZF oscillations by energetic particles in TJ-II.
We will generate fast ions by means of the diagnostic neutral beam injector and try to measure oscillations in the zonal potential, if we are able to generate them. If so, we will characterize their spectrum and study the dependency with parameters: beam intensity, beam energy, and ion and electron temperatures.
The experimental results will be compared to dedicated gyrokinetic simulations.
If applicable, International or National funding project or entity
N/A
Description of required resources
The experiments will be carried out in ECRH plasmas that will provide a ground state to add the fast ions from the neutral beam. At this stage, no change in the magnetic configuraton is required. We will work in the standard 100_44_64.
A basic characterization of the plasmas will require the interferometer and Thomson Scattering diagnostics. A good estimation of experimental electron density and temperature profiles at times of interest will be required for the simulations. In addition to the Thomson measurements, the He beam will help in fitting the profiles in the plasma edge and the NPA will be required to have some information about the ion temperature. The Doppler reflectometer and the dual HIBP are basic for the characterization of the potential oscillations.
A characterization of the fast ions populations by means of passive spectrroscopy and/or luminiscent probes will be very convenient.
Required resources:
- Number of plasma discharges or days of operation: one experimental day.
- Essential diagnostic systems:
- Interferometry - Thomson Scattering - Neutral Particle Analyzer - Helium beam - The double Heavy Ion Beam probe - Doppler reflectometer - [passive spectrroscopy and/or luminiscent probes]
- Type of plasmas (heating configuration): stable ECRH plasmas in the standard configuration.
- Specific requirements on wall conditioning if any:
- External users: need a local computer account for data access: no
- Any external equipment to be integrated? Provide description and integration needs:
Preferred dates and degree of flexibility
Preferred dates: (format dd-mm-yyyy)