Toroidal coordinates: Difference between revisions

Line 193: Line 193:
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
:<math>
:<math>
\mathbf{B} = \beta\nabla\psi + \nabla\chi
\mathbf{B} = \eta\nabla\psi + \nabla\chi
</math>
</math>
where <math>\chi</math> is identified as the magnetic ''scalar'' potential.
where <math>\chi</math> is identified as the magnetic ''scalar'' potential.
204

edits