TJ-II:Coil system: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:TJ-II_Helical_coil.jpg|400px|thumb|right|The core coil pack consists of three coils: the circular core (CC), the helix 1 (HX1), and the helix 2 (HX2).]] | [[File:TJ-II_Helical_coil.jpg|400px|thumb|right|The core coil pack consists of three coils: the circular core (CC), the helix 1 (HX1), and the helix 2 (HX2).]] | ||
The [[TJ-II]] coil system is listed in the table below. | The [[TJ-II]] coil system is listed in the table below (in [[Toroidal coordinates|cylindrical coordinates]]). | ||
All coils are directly [[TJ-II:Cooling system|cooled]] by water flowing trough longitudinal holes in the conductors. | All coils are directly [[TJ-II:Cooling system|cooled]] by water flowing trough longitudinal holes in the conductors. | ||
All coils have a reinforced structure to avoid mechanical deformations.<ref>M. Medrano, M. Blaumoser, J. Alonso, G. Barrera, M. Pastor, C. Rubio, F. Pedrazo, and O. Heusmann, ''Strength considerations on the magnetic field coils of the Spanish Stellarator TJ-II'', [[doi:10.1109/FUSION.1993.518529| Fusion Engineering, 15th IEEE/NPSS Symposium (1993)]]</ref> | All coils have a reinforced structure to avoid mechanical deformations.<ref>M. Medrano, M. Blaumoser, J. Alonso, G. Barrera, M. Pastor, C. Rubio, F. Pedrazo, and O. Heusmann, ''Strength considerations on the magnetic field coils of the Spanish Stellarator TJ-II'', [[doi:10.1109/FUSION.1993.518529| Fusion Engineering, 15th IEEE/NPSS Symposium (1993)]]</ref> |
Revision as of 10:23, 26 April 2024
The TJ-II coil system is listed in the table below (in cylindrical coordinates). All coils are directly cooled by water flowing trough longitudinal holes in the conductors. All coils have a reinforced structure to avoid mechanical deformations.[1]
Coil | Number | Size (m) | Position (m) | Turns |
---|---|---|---|---|
Circular (CC) | 1 | R = 1.5 | Z = 0 | 24 |
Helical (HX)[2] | 1 | R = 1.5 swing = 0.07 |
Z = 0 | 24 |
Toroidal (TF) | 28 | r = 0.425 | R = 1.5 + 0.2825 cos(4φ) Z = -0.2825 sin(4φ) |
8 |
Toroidal (TF) | 4 | r = 0.475 | R = 1.5 + 0.3325 cos(4φ) Z = -0.3325 sin(4φ) φ = 0, 90, 180, 270° |
9 |
Vertical (VF) | 2 | R = 2.25 | Z = ± 0.75 | 16 |
Compensation (OH) | 2 | R = 0.78 | Z = ± 0.75 | 20 |
Compensation (OH) | 2 | R = 2.29 | Z = ± 0.75 | 1 |
Radial (R) | 2 | R = 0.74 | Z = ± 0.75 | 7 |
Radial (R) | 2 | R = 2.24 | Z = ± 0.75 | 5 |
The main helical field is produced by the CC, HX, and TF coils. The vertical field coils (VF) allow positioning the magnetic axis. The ohmic coils (OH) can generate a loop voltage of 0.1 V, intended to cancel spurious toroidal currents. The radial coils (R) produce a trimming radial field of up to 100 G, intended to compensate stray fields.
See also
References
- ↑ M. Medrano, M. Blaumoser, J. Alonso, G. Barrera, M. Pastor, C. Rubio, F. Pedrazo, and O. Heusmann, Strength considerations on the magnetic field coils of the Spanish Stellarator TJ-II, Fusion Engineering, 15th IEEE/NPSS Symposium (1993)
- ↑ J. Alonso and M. Blaumoser, Design and feasibility of the TJ-II hard core, Fusion Engineering, 14th IEEE/NPSS Symposium (1991)