Ellipticity: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
(added expression "elongation")
(Mention the effects of increasing elongation)
Line 10: Line 10:
The ellipticity is then defined as follows:
The ellipticity is then defined as follows:
:<math> \kappa = (Z_{max}-Z_{min})/2a</math>
:<math> \kappa = (Z_{max}-Z_{min})/2a</math>
Higher elongation is beneficial for fusion performance, but comes with increased vertical instability growth rate and thus increased risk of vertical displacement event (VDE) type disruptions.<ref>D.A. Humphreys, et al., ''Experimental vertical stability studies for ITER performance and design guidance'' [[doi:10.1088/0029-5515/49/11/115003|Nucl. Fusion '''49''' (2009) 115003]]</ref>


== See also ==
== See also ==

Revision as of 18:40, 27 March 2023

Sketch of tokamak geometry

The ellipticity (also referred to as elongation[1]) refers to the shape of the poloidal cross section of the Last Closed Flux surface or separatrix of a tokamak.

Assuming[1]:

  • Rmax is the maximum value of R along the LCFS or separatrix.
  • Rmin is the minimum value of R along the LCFS or separatrix.
  • Zmax is the maximum value of Z along the LCFS or separatrix.
  • Zmin is the minimum value of Z along the LCFS or separatrix.
  • a is the minor radius of the plasma, defined as (Rmax - Rmin)/2.

The ellipticity is then defined as follows:

Higher elongation is beneficial for fusion performance, but comes with increased vertical instability growth rate and thus increased risk of vertical displacement event (VDE) type disruptions.[2]

See also

References

  1. 1.0 1.1 T.C. Luce, Plasma Phys. Control. Fusion 55 (2013) 095009
  2. D.A. Humphreys, et al., Experimental vertical stability studies for ITER performance and design guidance Nucl. Fusion 49 (2009) 115003