TJ-II:Electron Cyclotron Resonant Heating: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
In the [[TJ-II]] stellarator, the plasmas are created and heated by two 53.2 GHz gyrotrons, each of them delivering up to 300 kW in the 2<sup>nd</sup> harmonic, with X-mode polarisation.
In the [[TJ-II]] stellarator, the plasmas are created and heated by two 53.2 GHz gyrotrons, each of them delivering up to 300 kW in the 2<sup>nd</sup> harmonic, with X-mode polarisation.
<ref>[http://dx.doi.org/10.1088/0741-3335/30/7/008 F. Castejón and J. Guasp, ''Microwave injection in heliac device TJ-II'', Plasma Phys. Control. Fusion '''30''' (1988) 907-911]</ref>
<ref>[[doi:10.1088/0741-3335/30/7/008|F. Castejón and J. Guasp, ''Microwave injection in heliac device TJ-II'', Plasma Phys. Control. Fusion '''30''' (1988) 907-911]]</ref>
The power is transmitted to the plasma by two quasi-optical transmission lines (QTL1 and QTL2).
The power is transmitted to the plasma by two quasi-optical transmission lines (QTL1 and QTL2).
<ref>[http://dx.doi.org/10.1023/A:1006720117520 A. Fernández et al, ''Quasioptical Transmission Lines for ECRH at TJ-II Stellarator'', International Journal of Infrared and Millimeter Waves '''21''', 12 (2000) 1945-1957]</ref>  
<ref>[[doi:10.1023/A:1006720117520|A. Fernández et al, ''Quasioptical Transmission Lines for ECRH at TJ-II Stellarator'', International Journal of Infrared and Millimeter Waves '''21''', 12 (2000) 1945-1957]]</ref>  
The power is delivered to the [[TJ-II:Sectors|sector]] B3 (for QTL1) and A6 (for QTL2).
The power is delivered to the [[TJ-II:Sectors|sector]] B3 (for QTL1) and A6 (for QTL2).
The last mirror of each line is a steerable mirror located inside the [[TJ-II:Vacuum system|vacuum vessel]], which allows for perpendicular and oblique injection.  
The last mirror of each line is a steerable mirror located inside the [[TJ-II:Vacuum system|vacuum vessel]], which allows for perpendicular and oblique injection.  
<ref>[http://dx.doi.org/10.1109/ICIMW.2000.892950 A. Fernández et al, ''Design of the upgraded TJ-II quasi-optical transmission line'', Conference Digest, 25<sup>th</sup> International Conference on Infrared and Millimeter Waves (2000) 91 - 92]</ref>
<ref>[[doi:10.1109/ICIMW.2000.892950|A. Fernández et al, ''Design of the upgraded TJ-II quasi-optical transmission line'', Conference Digest, 25<sup>th</sup> International Conference on Infrared and Millimeter Waves (2000) 91 - 92]]</ref>
<ref>[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4516800&isnumber=4516365 A. Fernandez et al, ''EC waves polarization control in the TJ-II stellarator'', Joint 32<sup>nd</sup> International Conference on Infrared and Millimeter Waves (2007)]</ref>
<ref>[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4516800&isnumber=4516365 A. Fernandez et al, ''EC waves polarization control in the TJ-II stellarator'', Joint 32<sup>nd</sup> International Conference on Infrared and Millimeter Waves (2007)]</ref>
<ref>[http://dx.doi.org/10.1007/s10762-007-9256-2 A. Fernández et al, ''Gyrotron Radiation Affected by a Controlled Modulated Reflector: High Power Experiment'', International Journal of Infrared and Millimeter Waves '''28''', 9 (2007) 705-711]</ref>
<ref>[[doi:10.1007/s10762-007-9256-2|A. Fernández et al, ''Gyrotron Radiation Affected by a Controlled Modulated Reflector: High Power Experiment'', International Journal of Infrared and Millimeter Waves '''28''', 9 (2007) 705-711]]</ref>
<ref>[http://dx.doi.org/10.1016/j.fusengdes.2008.12.092 A. Fernández et al, ''Performance of the TJ-II ECRH system with the new −80 kV 50 A high voltage power supply'', Fusion Engineering and Design '''84''', Issues 2-6 (2009) 772-775]</ref>
<ref>[[doi:10.1016/j.fusengdes.2008.12.092|A. Fernández et al, ''Performance of the TJ-II ECRH system with the new −80 kV 50 A high voltage power supply'', Fusion Engineering and Design '''84''', Issues 2-6 (2009) 772-775]]</ref>
The gyrotrons can be modulated for perturbative transport experiments <ref>[http://stacks.iop.org/PPCF/45/105 S. Eguilior et al, ''Heat wave experiments on TJ-II flexible heliac'', Plasma Phys. Control. Fusion '''45''' (2003) 105–120]</ref> and can be used to drive current.
The gyrotrons can be modulated for perturbative transport experiments <ref>[http://stacks.iop.org/PPCF/45/105 S. Eguilior et al, ''Heat wave experiments on TJ-II flexible heliac'', Plasma Phys. Control. Fusion '''45''' (2003) 105–120]</ref> and can be used to drive current.
<ref>[http://dx.doi.org/10.1088/0741-3335/40/12/010 V. Tribaldos et al, ''Electron cyclotron heating and current drive in the TJ-II stellarator'', Plasma Phys. Control. Fusion '''40''' (1998) 2113]</ref>
<ref>[[doi:10.1088/0741-3335/40/12/010|V. Tribaldos et al, ''Electron cyclotron heating and current drive in the TJ-II stellarator'', Plasma Phys. Control. Fusion '''40''' (1998) 2113]]</ref>
 
== See also ==
 
[http://www-fusion.ciemat.es/panoramas/Panorama_ECRH.html Panorama showing the TJ-II ECRH system]


== References ==
== References ==
<references />
<references />

Revision as of 20:44, 6 February 2014

In the TJ-II stellarator, the plasmas are created and heated by two 53.2 GHz gyrotrons, each of them delivering up to 300 kW in the 2nd harmonic, with X-mode polarisation. [1] The power is transmitted to the plasma by two quasi-optical transmission lines (QTL1 and QTL2). [2] The power is delivered to the sector B3 (for QTL1) and A6 (for QTL2). The last mirror of each line is a steerable mirror located inside the vacuum vessel, which allows for perpendicular and oblique injection. [3] [4] [5] [6] The gyrotrons can be modulated for perturbative transport experiments [7] and can be used to drive current. [8]

See also

Panorama showing the TJ-II ECRH system

References