VMEC: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional


:<math>W = \int_{\omega_p}{ \left ( \frac{1}{2 \mu_0} B^2 + p \right ) dV}</math>
:<math>W = \int_{\Omega_p}{ \left ( \frac{1}{2 \mu_0} B^2 + p \right ) dV}</math>


over the toroidal domain &omega;<sub>p</sub>. The solution is obtained in  
over the toroidal domain &Omega;<sub>p</sub>. The solution is obtained in  
[[Flux coordinates|flux coordinates]]  
[[Flux coordinates|flux coordinates]]  
(''s'', ''&theta;'', ''&zeta;''), related to the [[Toroidal coordinates|cylindrical coordinates]]  
(''s'', ''&theta;'', ''&zeta;''), related to the [[Toroidal coordinates|cylindrical coordinates]]  

Revision as of 12:17, 3 November 2010

The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional

over the toroidal domain Ωp. The solution is obtained in flux coordinates (s, θ, ζ), related to the cylindrical coordinates (R, φ, Z) by

The code assumes nested flux surfaces. [1] [2]

Implementations of the code

The code is being used at:

  • ORNL, Oak Ridge, TN, USA (code origin)
  • PPPL, Princeton, NJ, USA
  • IPP, Garching, Germany
  • CRPP, Lausanne, Switzerland
  • NIFS, Japan
  • LNF, Spain

Enhancements / extensions of the code

  • DIAGNO, [3] to calculate the response of magnetic diagnostics
  • MFBE [4]
  • STELLOPT [5]

References