VMEC: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional | The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional | ||
:<math>W = \int_{\ | :<math>W = \int_{\Omega_p}{ \left ( \frac{1}{2 \mu_0} B^2 + p \right ) dV}</math> | ||
over the toroidal domain & | over the toroidal domain Ω<sub>p</sub>. The solution is obtained in | ||
[[Flux coordinates|flux coordinates]] | [[Flux coordinates|flux coordinates]] | ||
(''s'', ''θ'', ''ζ''), related to the [[Toroidal coordinates|cylindrical coordinates]] | (''s'', ''θ'', ''ζ''), related to the [[Toroidal coordinates|cylindrical coordinates]] |
Revision as of 12:17, 3 November 2010
The three-dimensional Variational Moments Equilibrium Code (VMEC) minimizes the energy functional
over the toroidal domain Ωp. The solution is obtained in flux coordinates (s, θ, ζ), related to the cylindrical coordinates (R, φ, Z) by
The code assumes nested flux surfaces. [1] [2]
Implementations of the code
The code is being used at:
- ORNL, Oak Ridge, TN, USA (code origin)
- PPPL, Princeton, NJ, USA
- IPP, Garching, Germany
- CRPP, Lausanne, Switzerland
- NIFS, Japan
- LNF, Spain
Enhancements / extensions of the code
References
- ↑ S.P. Hirschman et al, Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria, Phys. Fluids 26 (1983) 3553
- ↑ S.P. Hirschman et al, Three-dimensional free boundary calculations using a spectral Green's function method, Computer Physics Communications 43, 1 (1986) 143-155
- ↑ H.J. Gardner, Nucl. Fusion 30 (1990) 1417
- ↑ E. Strumberger, Finite-β magnetic field line tracing for Helias configurations, Nucl. Fusion 37 (1997) 19
- ↑ D.A. Spong et al., Physics issues of compact drift optimized stellarators, Nucl. Fusion 41 (2001) 711