Collisionality: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
Line 9: Line 9:


assuming ''v > v*'', where ''m<sub>r</sub> = mm*/(m+m*)'' is the reduced mass and ''n*'' the bulk particle density.
assuming ''v > v*'', where ''m<sub>r</sub> = mm*/(m+m*)'' is the reduced mass and ''n*'' the bulk particle density.
The factor ln &Lambda; appears due to the accumulation of many small-angle collisions within a Debye sphere.
The factor ln &Lambda; appears due to the accumulation of many small-angle collisions within a [[Debye length|Debye sphere]].


== Dimensionless collisionality ==
== Dimensionless collisionality ==

Revision as of 21:15, 25 July 2010

In a plasma, the collision time τcoll is defined as the time in which the trajectory of a (charged) particle undergoes a change of direction of 90 degrees. Due to the long range of the Coulomb force, Coulomb interactions are typically small angle scattering events, so that this direction change typically requires a large number of interactions.

Consider a test particle with charge q, mass m, and velocity v colliding with bulk particles with charge q*, mass m*, and thermal velocity v*. Then the collision frequency ν = 1/τcoll is given by [1]

assuming v > v*, where mr = mm*/(m+m*) is the reduced mass and n* the bulk particle density. The factor ln Λ appears due to the accumulation of many small-angle collisions within a Debye sphere.

Dimensionless collisionality

The dimensionless collisionality ν* is defined as [2]

References

  1. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion, Springer-Verlag (2005) ISBN 3540242171
  2. ITER Physics Basis, Nucl. Fusion 39 (1999) 2137