Heat pinch: Difference between revisions

Jump to navigation Jump to search
(Created page with 'The concept of heat pinch is related to the convective term proportional to ''V'' in the (electron) heat transport equation: :<math>q_e = -n_e\chi \nabla T_e + n_e V T_e</math> …')
 
Line 24: Line 24:
In inhomogenous systems (such as fusion plasmas), the ''Fokker-Planck'' formulation seems more appropriate.
In inhomogenous systems (such as fusion plasmas), the ''Fokker-Planck'' formulation seems more appropriate.
<ref>[[doi:10.1088/0741-3335/47/12B/S56|B.Ph. van Milligen, B.A. Carreras and R. Sá́nchez, ''The foundations of diffusion revisited'', Plasma Phys. Control. Fusion '''47''' (2005) B743–B754]]</ref>
<ref>[[doi:10.1088/0741-3335/47/12B/S56|B.Ph. van Milligen, B.A. Carreras and R. Sá́nchez, ''The foundations of diffusion revisited'', Plasma Phys. Control. Fusion '''47''' (2005) B743–B754]]</ref>
Within the Fokker-Planck formulation, the radial gradient of the heat conductivity produces a 'natural' heat pinch ''V = -d&chi;/dr''.
Within the Fokker-Planck formulation, the radial gradient of the heat conductivity produces a 'natural' heat pinch.
By way of simplified example, one may write the Fokker-Planck heat transport equation
 
:<math>q_e = - \nabla(n_e \chi T_e) + n_eUT_e</math>
 
Setting ''U = 0'' and assuming ''&nabla; n<sub>e</sub> = 0'', comparison with the above 'Fickian' heat transport equation shows that
 
:<math>V = -\nabla \chi</math>
 
I.e., the gradient of the heat conductivity produces a 'natural' pinch.


== Mesoscopic and microscopic mechanisms ==
== Mesoscopic and microscopic mechanisms ==

Navigation menu