Rotational transform: Difference between revisions

Jump to navigation Jump to search
Line 16: Line 16:
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>


:<math>\frac{r d\theta}{B_\theta} = \frac{Rd\phi}{B_\phi}</math>
:<math>\frac{r d\theta}{B_\theta} = \frac{Rd\varphi}{B_\phi}</math>


where ''&phi;'' and ''&theta;'' are the [[Toroidal coordinates|toroidal and poloidal angles]], respectively.  
where ''&varphi;'' and ''&theta;'' are the [[Toroidal coordinates|toroidal and poloidal angles]], respectively.  
Thus ''q = m/n = <d&phi;/d&theta;>'' can be approximated by
Thus ''q = m/n = <d&varphi;/d&theta;>'' can be approximated by


:<math>q \simeq \frac{r B_\phi}{R B_\theta}</math>
:<math>q \simeq \frac{r B_\varphi}{R B_\theta}</math>


== See also ==
== See also ==
Anonymous user

Navigation menu