Hamada coordinates: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 19: Line 19:


== Magnetic field and current density expressions in Hamada vector basis ==
== Magnetic field and current density expressions in Hamada vector basis ==
With the form of the Hamada coordinates' Jacobian we can now write the explicit contravariant form of the magnetic field in terms of the '''Hamada''' basis vectors
With the form of the Hamada coordinates' Jacobian we can now write the explicit [[Flux coordinates#Contravariant Form|contravariant form]] of the magnetic field in terms of the '''Hamada''' basis vectors
:<math>
:<math>
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
Line 25: Line 25:
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).


The covariant expression is less clean
The [[Flux coordinates#Convariant Form |covariant expression]] is less clean
:<math>
:<math>
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
Line 33: Line 33:
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
</math>
</math>
where the integral over <math>\theta</math> is zero because the jacobian in Hamda coordinates is not a function of this angle. Similarly
where the integral over <math>\theta</math> is zero because the jacobian in Hamada coordinates is not a function of this angle. Similarly
:<math>
:<math>
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
</math>
</math>
204

edits

Navigation menu