Nuclear fusion: Difference between revisions

Jump to navigation Jump to search
Line 44: Line 44:


Fusion undoubtedly offers some important advantages. Once operative, energy supply would be virtually limitless; greenhouse gas exhaust would be zero; nuclear waste and the danger of nuclear accidents would be strongly reduced (with respect to fission power plants), and nuclear proliferation problems would be small or inexistent. On the other hand, there are complications due to the very complex technology required and the radioactive activation of the reactor vessel components.
Fusion undoubtedly offers some important advantages. Once operative, energy supply would be virtually limitless; greenhouse gas exhaust would be zero; nuclear waste and the danger of nuclear accidents would be strongly reduced (with respect to fission power plants), and nuclear proliferation problems would be small or inexistent. On the other hand, there are complications due to the very complex technology required and the radioactive activation of the reactor vessel components.
A significant part of the latter complications are due to the projected use of D-T fuels (deuterium-tritium) in the first-generation fusion power plants, which is the fuel that is easiest to ignite, but which leads to intense neutron radiation. One may speculate that, if successful, a second generation of fusion power plants can be developed that runs on aneutronic fuels (such as D-D), leading to a strong reduction of the problems associated with radioactivity.
A significant part of the latter complications are due to the projected use of D-T fuels (deuterium-tritium) in the first-generation fusion power plants, which is the fuel that is easiest to ignite, but which leads to intense neutron radiation. One may speculate that, if successful, a second generation of fusion power plants can be developed that runs on other fuel mixtures (such as D-D), leading to a reduction of the problems associated with radioactivity.


Differing from some other energy options, the implementation of energy generation by fusion is not immediate, and subject to the solution of a number of technical problems. The current consensus it that while the technical challenges are formidable, they can be overcome. Thus, the main discussion regarding fusion as an energy option is not about its technical feasibility, but about the timescales for implementation.
Differing from some other energy options, the implementation of energy generation by fusion is not immediate, and subject to the solution of a number of technical problems. The current consensus it that while the technical challenges are formidable, they can be overcome. Thus, the main discussion regarding fusion as an energy option is not about its technical feasibility, but about the timescales for implementation.

Navigation menu