Toroidal coordinates: Difference between revisions

Line 192: Line 192:
==== Covariant Form ====
==== Covariant Form ====


If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
If we consider an equilibrium magnetic field such that <math> \mathbf{j}\times\mathbf{B} \propto \nabla\psi</math>, where <math> \mathbf{j}</math> is the current density , then both <math> \mathbf{B}\cdot\nabla\psi = 0</math> and <math> \nabla\times\mathbf{B}\cdot\nabla\psi = 0</math> and the magnetic field can be written as
:<math>
:<math>
\mathbf{B} = \beta\nabla\psi + \nabla\chi
\mathbf{B} = \beta\nabla\psi + \nabla\chi
Line 226: Line 226:
I_{tor} = \int_S \mu_0\mathbf{j}\cdot d\mathbf{S}\; ; ~\mathrm{with}~ \partial S ~\mathrm{such~that}~ (\Delta\theta = 2\pi, \Delta\phi = 0)~.
I_{tor} = \int_S \mu_0\mathbf{j}\cdot d\mathbf{S}\; ; ~\mathrm{with}~ \partial S ~\mathrm{such~that}~ (\Delta\theta = 2\pi, \Delta\phi = 0)~.
</math>
</math>
===== Contravariant Form of the current density =====
Taking the curl of the covariant form of <math>\mathbf{B}</math> the equilibrium current density <math>\mathbf{j}</math> can be written as
: <math>
\mathbf{j} = \nabla\psi\times\nabla\eta~.
</math>
By very similar arguments as those used for <math>\mathbf{B}</math> (note that both <math>\mathbf{B}</math> and <math>\mathbf{j}</math> are solenoidal fields tangent to the flux surfaces) it can be shown that the general expression for <math>\eta</math> is
:<math>
\eta(\psi,\theta,\phi) = \frac{1}{2\pi}(\dot{I}_{tor}\theta
- \dot{I}_{pol}\phi)
+ \tilde{\eta}(\psi,\theta,\phi)~.
</math>
Note that the poloidal current is now defined through a ribbon and not a disc.


== Magnetic coordinates ==
== Magnetic coordinates ==
204

edits