Toroidal coordinates: Difference between revisions

Line 116: Line 116:
\langle\Phi\rangle = \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \Phi\; d\mathcal{V}
\langle\Phi\rangle = \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \Phi\; d\mathcal{V}
</math>
</math>
where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average.
where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average. To avoid confusion, we denote volume elements or domains with the calligraphic <math>\mathcal{V}</math>. Capital <math>V</math> is reserved for the flux surface coordinate defined as the volume within a flux surface.


Introducing the differential volume element <math>d\mathcal{V} = \sqrt{g} d\psi d\theta d\phi</math>
Introducing the differential volume element <math>d\mathcal{V} = \sqrt{g} d\psi d\theta d\phi</math>
Line 132: Line 132:
</math>
</math>


Note that <math>d\mathcal{S} = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> :
Note that <math>dS = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> :
:<math>
:<math>
\langle\Phi\rangle  
\langle\Phi\rangle  
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi  
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi  
= \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; d\mathcal{S}
= \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; dS
= \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; d\mathcal{S}
= \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; dS
</math>
</math>


Line 144: Line 144:
\langle\nabla\cdot\Gamma\rangle  
\langle\nabla\cdot\Gamma\rangle  
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \nabla\cdot\Gamma\; d\mathcal{V}
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \nabla\cdot\Gamma\; d\mathcal{V}
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{S(\delta \mathcal{V})} \Gamma\cdot \frac{\nabla V}{|\nabla V|}d\mathcal{S}
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{S(\delta \mathcal{V})} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\left(\langle\Gamma\cdot\nabla V\rangle_{(V+\delta \mathcal{V})} - \langle\Gamma\cdot\nabla V\rangle_{(V)} \right)
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\left(\langle\Gamma\cdot\nabla V\rangle_{S(V+\delta \mathcal{V})} - \langle\Gamma\cdot\nabla V\rangle_{S(V)} \right)
= \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
= \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
</math>
</math>
204

edits