Toroidal coordinates: Difference between revisions

Line 114: Line 114:
The flux surface average of a function <math>\Phi</math> is defined as the limit
The flux surface average of a function <math>\Phi</math> is defined as the limit
:<math>
:<math>
\langle\Phi\rangle = \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \Phi\; d^3x
\langle\Phi\rangle = \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \Phi\; d\mathcal{V}
</math>
</math>
where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average.
where <math>\delta V</math> is the volume confined between two flux surfaces. It is therefore a ''volume average'' over an infinitesimal spatial region rather than a surface average.


Introducing the differential volume element <math>d^3x = \sqrt{g} d\psi d\theta d\phi</math>
Introducing the differential volume element <math>d\mathcal{V} = \sqrt{g} d\psi d\theta d\phi</math>
:<math>
:<math>
\langle\Phi\rangle  
\langle\Phi\rangle  
= \lim_{\delta V \to 0} \frac{1}{\delta V}\int_{\delta V} \Phi\; \sqrt{g} d\psi d\theta d\phi
= \lim_{\delta \mathcal{V} \to 0} \frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \Phi\; \sqrt{g} d\psi d\theta d\phi
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi
</math>
</math>
Line 132: Line 132:
</math>
</math>


Note that <math>dS = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> :
Note that <math>d\mathcal{S} = |\nabla\psi|\sqrt{g}d\theta d\phi</math>, so the FSA is a surface integral ''weighted by'' <math>|\nabla V|^{-1}</math> :
:<math>
:<math>
\langle\Phi\rangle  
\langle\Phi\rangle  
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi  
= \frac{d\psi}{d V}\int_0^{2\pi}\int_0^{2\pi}\Phi\; \sqrt{g} d\theta d\phi  
= \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; dS
= \frac{d\psi}{d V}\int_{S(\psi)}\frac{\Phi}{|\nabla\psi|}\; d\mathcal{S}
= \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; dS
= \int_{S(\psi)}\frac{\Phi}{|\nabla V|}\; d\mathcal{S}
</math>
</math>


Line 143: Line 143:
:<math>
:<math>
\langle\nabla\cdot\Gamma\rangle  
\langle\nabla\cdot\Gamma\rangle  
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{\delta V} \nabla\cdot\Gamma\; d^3x
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{\delta \mathcal{V}} \nabla\cdot\Gamma\; d\mathcal{V}
= \lim_{\delta V \to 0}\frac{1}{\delta V}\int_{S(\delta V)} \Gamma\cdot \frac{\nabla V}{|\nabla V|}dS
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\int_{S(\delta \mathcal{V})} \Gamma\cdot \frac{\nabla V}{|\nabla V|}d\mathcal{S}
= \lim_{\delta V \to 0}\left(\langle\Gamma\cdot\nabla V\rangle_{S(V+\delta V)} - \langle\Gamma\cdot\nabla V\rangle_{S(V)} \right)
= \lim_{\delta \mathcal{V} \to 0}\frac{1}{\delta \mathcal{V}}\left(\langle\Gamma\cdot\nabla V\rangle_{(V+\delta \mathcal{V})} - \langle\Gamma\cdot\nabla V\rangle_{(V)} \right)
= \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
= \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle~.
</math>
</math>
Line 153: Line 153:


*<math> \langle\nabla\cdot\Gamma\rangle = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle  = \frac{1}{V'}\frac{d}{d\psi}V'\langle\Gamma\cdot\nabla \psi\rangle</math>
*<math> \langle\nabla\cdot\Gamma\rangle = \frac{d}{dV}\langle\Gamma\cdot\nabla V\rangle  = \frac{1}{V'}\frac{d}{d\psi}V'\langle\Gamma\cdot\nabla \psi\rangle</math>
*<math> \int_{V}\nabla\cdot\Gamma\; d^3x =  \langle\Gamma\cdot\nabla V\rangle = V'\langle\Gamma\cdot\nabla \psi\rangle</math>
*<math> \int_{\mathcal{V}}\nabla\cdot\Gamma\; d\mathcal{V} =  \langle\Gamma\cdot\nabla V\rangle = V'\langle\Gamma\cdot\nabla \psi\rangle</math>
*<math> \langle \sqrt{g}^{-1}\rangle = \frac{4\pi^2}{V'}
*<math> \langle \sqrt{g}^{-1}\rangle = \frac{4\pi^2}{V'}
</math>
</math>
204

edits