Toroidal coordinates: Difference between revisions

Line 199: Line 199:
\chi(\psi, \theta, \phi) = \frac{I_{tor}}{2\pi}\theta + \frac{I_{pol}^d}{2\pi}\phi + \tilde\chi(\psi, \theta, \phi)
\chi(\psi, \theta, \phi) = \frac{I_{tor}}{2\pi}\theta + \frac{I_{pol}^d}{2\pi}\phi + \tilde\chi(\psi, \theta, \phi)
</math>
</math>
In fact, noting that
The functional dependence on the angular variables is again motivated by the single-valuedness of the magnetic field. The particular form of the coefficients can be obtained noting that
:<math>
:<math>
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}  
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}  
Line 206: Line 206:
= \oint(\beta d\psi + d\chi)
= \oint(\beta d\psi + d\chi)
</math>
</math>
and choosing an integration circuit contained within a flux surface we get
and choosing an integration circuit contained within a flux surface. We get
:<math>
:<math>
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}
\int_S \mu_0\mathbf{j}\cdot d\mathbf{S}
204

edits