Toroidal coordinates: Difference between revisions

Line 211: Line 211:
= \Delta \chi = \frac{I_{tor}}{2\pi}\Delta\theta + \frac{I_{pol}^d}{2\pi}\Delta\phi~.
= \Delta \chi = \frac{I_{tor}}{2\pi}\Delta\theta + \frac{I_{pol}^d}{2\pi}\Delta\phi~.
</math>
</math>
[[Image:CurrentIntegrationCirtuits.png|thumb|right|alt=Sample integration circuits for the definitions of currents.|Sample integration circuits for the current definitions.]]
If we now chose a ''toroidal'' circuit <math>(\Delta\theta = 0, \Delta\phi = 2\pi)</math> we get
If we now chose a ''toroidal'' circuit <math>(\Delta\theta = 0, \Delta\phi = 2\pi)</math> we get
:<math>
:<math>
I_{pol}^d = \int_S \mu_0\mathbf{j}\cdot d\mathbf{S}\; ; ~\mathrm{with}~ \partial S ~\mathrm{such~that}~ (\Delta\theta = 0, \Delta\phi = 2\pi)~.
I_{pol}^d = \int_S \mu_0\mathbf{j}\cdot d\mathbf{S}\; ; ~\mathrm{with}~ \partial S ~\mathrm{such~that}~ (\Delta\theta = 0, \Delta\phi = 2\pi)~.
</math>
</math>
[[Image:CurrentIntegrationCirtuits.png|thumb|left|alt=Sample integration circuits for the definitions of currents.|Sample integration circuits for the current definitions.]]
Similarly
:<math>
I_{tor} = \int_S \mu_0\mathbf{j}\cdot d\mathbf{S}\; ; ~\mathrm{with}~ \partial S ~\mathrm{such~that}~ (\Delta\theta = 2\pi, \Delta\phi = 0)~.
</math>


== Magnetic coordinates ==
== Magnetic coordinates ==
204

edits