TJ-II:Tomography: Difference between revisions

no edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
:<math>E(\rho,\theta) = \sum_{n,m}{C_{nm}f_{n}(\rho) \exp(im\theta)}\,\!</math>
:<math>E(\rho,\theta) = \sum_{n,m}{C_{nm}f_{n}(\rho) \exp(im\theta)}\,\!</math>


Separating out the ''n'' = 0 terms:
Separating out the ''m'' = 0 terms:


:<math>E(\rho,\theta) = \sum_{n=0}^N{C^0_{n0} f^0_{n}(\rho)} + \sum_{n,m=1}^{N,M}{f^1_{n}(\rho)\left [C^1_{nm}\cos(m\theta) + C^2_{nm}\sin(m\theta) \right ]}</math>
:<math>E(\rho,\theta) = \sum_{n=0}^N{C^0_{n0} f^0_{n}(\rho)} + \sum_{n,m=1}^{N,M}{f^1_{n}(\rho)\left [C^1_{nm}\cos(m\theta) + C^2_{nm}\sin(m\theta) \right ]}</math>
Line 12: Line 12:
:<math>\int_0^1{f_{n}(\rho)f_{n'}(\rho) \rho d\rho} = c_n \delta_{nn'}</math>
:<math>\int_0^1{f_{n}(\rho)f_{n'}(\rho) \rho d\rho} = c_n \delta_{nn'}</math>


where &delta;<sub>ij</sub> is the Kronecker delta. The [[:Wikipedia:Fourier\%E2\%80\%93Bessel\_series|Fourier-Bessel]] functions satisfy this requirement.
where &delta;<sub>ij</sub> is the Kronecker delta. The [[:Wikipedia:Fourier–Bessel_series|Fourier-Bessel]] functions satisfy this requirement.


== The reconstruction algorithm ==
== The reconstruction algorithm ==
Line 30: Line 30:
where the ''C<sub>&mu;</sub>'' are the mode coefficients. This is a linear set of equations that can be solved using standard techniques, allowing fast recovery of the mode coefficients from the detector signals. The detector signals ''I<sub>&nu;</sub>'' are assigned weights ''w<sub>&nu;</sub>'' inversely proportional to the square of the measurement error of measurement ''I<sub>&nu;</sub>''. Thus, any channel ''&nu;'' can be excluded from contributing to the result by setting ''w<sub>&nu;</sub>'' = 0.
where the ''C<sub>&mu;</sub>'' are the mode coefficients. This is a linear set of equations that can be solved using standard techniques, allowing fast recovery of the mode coefficients from the detector signals. The detector signals ''I<sub>&nu;</sub>'' are assigned weights ''w<sub>&nu;</sub>'' inversely proportional to the square of the measurement error of measurement ''I<sub>&nu;</sub>''. Thus, any channel ''&nu;'' can be excluded from contributing to the result by setting ''w<sub>&nu;</sub>'' = 0.


The regression technique used is a combined Gauss-Newton and modified Newton gradient descent algorithm that minimizes both the reconstruction error and the mode amplitudes.
The regression technique used is a combined Gauss-Newton and modified Newton gradient descent algorithm that minimizes both the reconstruction error and the mode amplitudes.<ref>J.A. Alonso, J.L. Velasco, I. Calvo, T. Estrada, J.M. Fontdecaba, J.M. García-Regaña, J. Geiger, M. Landreman, K.J. McCarthy, F. Medina, B.Ph. Van Milligen, M.A. Ochando, F.I. Parra, the TJ-II Team and the W-X Team, ''Parallel impurity dynamics in the TJ-II stellarator'', [[doi:10.1088/0741-3335/58/7/074009|Plasma Phys. Control. Fusion '''58''' (2016) 074009]]</ref>


== An example ==
== An example ==
Line 37: Line 37:


[[File:18370.gif|center|A rotating m=3 mode observed at TJ-II]]
[[File:18370.gif|center|A rotating m=3 mode observed at TJ-II]]
== See also ==
* [[TJ-II:Pellet injector]]
== References ==
<references />