TJ-II:Spectroscopy: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
<ref>[http://link.aip.org/link/?APCPCS/1058/219/1 K.J. McCarthy et al, ''A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator'', AIP Conf. Proc. '''1058''' (2008) 219-221]</ref>
<ref>[http://link.aip.org/link/?APCPCS/1058/219/1 K.J. McCarthy et al, ''A Study of Spectral Lines in Plasmas Heated by Neutral Beam Injection in the TJ-II Stellarator'', AIP Conf. Proc. '''1058''' (2008) 219-221]</ref>


The chord-integrated emissions of spectral lines are  monitored by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon
The chord-integrated emissions of spectral lines are  monitored by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon C<sup>5+</sup> 5290 &Aring; and C<sup>4+</sup> 2271 &Aring; for plasma diagnostic purposes.
<ref>[http://link.aip.org/link/?RSINAK/79/10F540/1 B. Zurro et al, ''An experimental system for spectral line ratio measurements in the TJ-II stellarator'', Rev. Sci. Instrum. '''79''' (2008) 10F540]</ref>
 
== References ==
<references />

Revision as of 12:34, 24 August 2009

TJ-II disposes of an eight-channel, high-resolution, spectroscopic diagnostic system. This system is currently being used to measure impurity ion temperature and poloidal rotation using passive emission spectroscopy. The principal features of the diagnostic include independent focusing of its channels, high sensitivity for performing Doppler measurements in low-density ECR-heated plasmas, as well as a flexible and fast in-house-developed software program for performing integrated data reduction and analysis. [1]

Another method for measuring absolutely calibrated rotation velocities consists of simultaneously recording the emission lines from the plasma and from a calibration lamp by means of a double fiber-fiber guide. [2]

A vacuum ultraviolet spectrometer is used for performing spectral surveys and specialized plasma studies. [3] [4]

The chord-integrated emissions of spectral lines are monitored by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon C5+ 5290 Å and C4+ 2271 Å for plasma diagnostic purposes. [5]

References