Stellarator symmetry: Difference between revisions

m
no edit summary
(Created page with 'Stellarator symmetry is a property of typical stellarator magnetic configurations. In a cylindrical coordinate system, it is expressed as…')
 
mNo edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Stellarator symmetry is a property of typical [[Stellarator|stellarator]] magnetic configurations.
Stellarator symmetry is a property of typical [[stellarator]] magnetic configurations.
It is important to be aware that it is an ''imposed'' (artificial) symmetry,
reflecting the symmetry of the design of the external magnetic field coils generating the configuration, and
not an ''inherent'' (natural) symmetry of stellarator plasmas.
<ref>R.L. Dewar, S.R. Hudson, ''Stellarator symmetry'', [[doi:10.1016/S0167-2789(97)00216-9|Physica D, '''112''' (1998) 275]]</ref>
Therefore, it has the same status as [[axisymmetry]] in [[tokamak]]s.
 
In a [[Toroidal coordinates|cylindrical coordinate system]], it is expressed as follows for a scalar field:
In a [[Toroidal coordinates|cylindrical coordinate system]], it is expressed as follows for a scalar field:


Line 8: Line 14:
:<math>\left ( B_R, B_\phi, B_Z \right )_{(R,\phi,Z)} = \left ( -B_R, B_\phi, B_Z \right )_{(R,-\phi,-Z)}</math>
:<math>\left ( B_R, B_\phi, B_Z \right )_{(R,\phi,Z)} = \left ( -B_R, B_\phi, B_Z \right )_{(R,-\phi,-Z)}</math>


With ''N''-fold rotation symmetry around the ''Z'' axis, there are ''2N'' such planes. <ref>[http://dx.doi.org/10.1016/S0167-2789(97)00216-9 R.L. Dewar, S.R. Hudson, ''Stellarator symmetry'', Phys. D, '''112''' (1998) 275]</ref>
With ''N''-fold rotation symmetry around the ''Z'' axis, there are ''2N'' such planes.  


== References ==
== References ==
<references/>
<references/>