ITER: Difference between revisions

From FusionWiki
Jump to navigation Jump to search
(Created page with 'ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of fusion as an energy source. For general backgro…')
 
No edit summary
Line 1: Line 1:
[[File:ITER.jpg|400px|thumb|right|ITER design]]
ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of fusion as an energy source.
ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of fusion as an energy source.
For general background information on the project, refer to the [[:Wikipedia:ITER|Wikipedia]].
For general background information on the project, refer to the [[:Wikipedia:ITER|Wikipedia]].
Line 4: Line 5:
== Main specifications ==
== Main specifications ==


ITER is a magnetic confinement device of the tokamak type, with the following characteristics:
ITER is a magnetic confinement device of the tokamak type, with the following characteristics in the reference scenario:
<ref>[http://dx.doi.org/10.1088/0741-3335/44/5/304 R. Aymar et al, ''The ITER design'', Plasma Phys. Control. Fusion '''44''' (2002) 519-565]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/44/5/304 R. Aymar et al, ''The ITER design'', Plasma Phys. Control. Fusion '''44''' (2002) 519-565]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/47/5A/003 A.C.C. Sips et al, ''Advanced scenarios for ITER operation'', Plasma Phys. Control. Fusion '''47''' (2005) A19-A40]</ref>
<ref>[http://dx.doi.org/10.1088/0741-3335/47/5A/003 A.C.C. Sips et al, ''Advanced scenarios for ITER operation'', Plasma Phys. Control. Fusion '''47''' (2005) A19-A40]</ref>
Line 11: Line 12:
!''Parameter'' !!''Value''
!''Parameter'' !!''Value''
|-
|-
|Major radius, R<sub>0</sub>||
|Major radius, R<sub>0</sub>(m) || 6.2
|-
|Minor radius, a (m) || 2.0
|-
|Toroidal field at R<sub>0</sub>, B<sub>T</sub> (T) || 5.3
|-
|Plasma current, I<sub>p</sub> (MA) || 15
|-
|Edge safety factor, q<sub>95</sub> || 3.0
|-
|Confinement enhancement, H<sub>H98</sub>(y,2) || 1.0
|-
|Normalised beta, &beta;<sub>N</sub> || 1.8
|-
|Average electron density, &lt;n<sub>e</sub>&gt; (10<sup>19</sup>m<sup>-3</sup>) || 10.1
|-
|Fraction of Greenwald limit, &lt;n<sub>e</sub>&gt;/n<sub>GW</sub> || 0.85
|-
|Average ion temperature, &lt;T<sub>i</sub>&gt; (keV) || 8.0
|-
|Average electron temperature, &lt;T<sub>e</sub>&gt; (keV) || 8.8
|-
|Neutral beam power, P<sub>NB</sub> (MW) || 33
|-
|RF power, P<sub>RF</sub> (MW) || 7
|-
|Fusion power, P<sub>fusion</sub> (MW) || 400
|-
|Fusion gain, Q=P<sub>fusion</sub>/(P<sub>NB</sub>+P<sub>RF</sub>) || 10
|-
|Non inductive current fraction, I<sub>NI</sub>/I<sub>p</sub> (%) || 28
|-
|Burn time (s) || 400
|}
|}
== See also ==
* [http://www.iter.org ITER website]


== References ==
== References ==
<references />
<references />

Revision as of 12:48, 25 August 2009

ITER design

ITER is an international engineering and research project oriented towards demonstrating the technical and scientific viability of fusion as an energy source. For general background information on the project, refer to the Wikipedia.

Main specifications

ITER is a magnetic confinement device of the tokamak type, with the following characteristics in the reference scenario: [1] [2]

Parameter Value
Major radius, R0(m) 6.2
Minor radius, a (m) 2.0
Toroidal field at R0, BT (T) 5.3
Plasma current, Ip (MA) 15
Edge safety factor, q95 3.0
Confinement enhancement, HH98(y,2) 1.0
Normalised beta, βN 1.8
Average electron density, <ne> (1019m-3) 10.1
Fraction of Greenwald limit, <ne>/nGW 0.85
Average ion temperature, <Ti> (keV) 8.0
Average electron temperature, <Te> (keV) 8.8
Neutral beam power, PNB (MW) 33
RF power, PRF (MW) 7
Fusion power, Pfusion (MW) 400
Fusion gain, Q=Pfusion/(PNB+PRF) 10
Non inductive current fraction, INI/Ip (%) 28
Burn time (s) 400

See also

References