Hamada coordinates: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 16: Line 16:
  \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~,
  \sqrt{g_H} = \langle\sqrt{g_H}^{-1}\rangle^{-1} = \frac{V'}{4\pi^2}~,
</math>
</math>
where the last idenity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. The Hamada angles are sometimes defined in `turns' (i.e. <math>(\theta, \xi) \in [0,1)</math>) instead of radians (<math>(\theta, \xi) \in [0,2\pi)</math>)). This choice together with the choice of the volume <math>V</math> as radial coordinate makes the Jacobian equal to unity. Alternatively one can select <math>\psi = \frac{V}{4\pi^2}</math> as radial coordinate with the same effect.
where the last idenity follows from the [[Flux coordinates#Useful properties of the FSA|properties of the flux surface average]]. The Hamada angles are sometimes defined in 'turns' (i.e. <math>(\theta, \xi) \in [0,1)</math>) instead of radians (<math>(\theta, \xi) \in [0,2\pi)</math>)). This choice together with the choice of the volume <math>V</math> as radial coordinate makes the Jacobian equal to unity. Alternatively one can select <math>\psi = \frac{V}{4\pi^2}</math> as radial coordinate with the same effect.


== Magnetic field and current density expressions in Hamada vector basis ==
== Magnetic field and current density expressions in Hamada vector basis ==
Line 23: Line 23:
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
  \mathbf{B} = 2\pi\Psi_{pol}'(V)\mathbf{e}_\theta + 2\pi\Psi_{tor}'(V)\mathbf{e}_\phi~.
</math>
</math>
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only).
This has the nice property of having flux constant contravariant coefficients (functions of the radial coordinate only). The current density contravariant looks alike
:<math>
\mu_0\mathbf{j} = 2\pi I_{pol}'(V)\mathbf{e}_\theta + 2\pi I_{tor}'(V)\mathbf{e}_\phi~.
</math>


The [[Flux coordinates#Convariant Form |covariant expression]] is less clean
The [[Flux coordinates#Convariant Form |covariant expression]] of the magnetic field is less clean
:<math>
:<math>
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
\mathbf{B} =  \frac{I_{tor}}{2\pi}\nabla\theta + \frac{I_{pol}^d}{2\pi}\nabla\phi + \nabla\tilde\chi~.
Line 33: Line 36:
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
\langle B_\theta\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\theta\rangle = \left\langle \frac{I_{tor}}{2\pi} + \frac{\partial \tilde\chi}{\partial \theta}\right\rangle = \frac{I_{tor}}{2\pi} + (V')^{-1}\int\partial_\theta\tilde\chi \sqrt{g} d\theta d\phi = \frac{I_{tor}}{2\pi}
</math>
</math>
where the integral over <math>\theta</math> is zero because the jacobian in Hamada coordinates is not a function of this angle. Similarly
where the integral over <math>\theta</math> is zero because the Jacobian in Hamada coordinates is not a function of this angle. Similarly
:<math>
:<math>
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
\langle B_\phi\rangle = \langle\mathbf{B}\cdot\mathbf{e}_\phi\rangle = \frac{I^d_{pol}}{2\pi}~.
</math>
</math>
204

edits